Mechanism of Salt Tolerance in Fruit Crops: A Review

DOI: 10.18805/ag.R-1919    | Article Id: R-1919 | Page : 25-33
Citation :- Mechanism of Salt Tolerance in Fruit Crops: A Review.Agricultural Reviews.2020.(41):25-33
P.K. Nimbolkar, Jyoti Bajeli, Arunima Tripathi, A.K. Chaube jyoti.bajeli24@gmail.com
Address : Department of Horticulture, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263 145, U.S. Nagar, Uttarakhand, India.
Submitted Date : 8-07-2019
Accepted Date : 18-03-2020

Abstract

Salinity in soil and water is a critical factor that is causing hindrance in crop production under salt affected areas. Plant metabolic activities are apparently restricted due to accumulation of salt. The event of salt stress happens to be the reason of severe alteration in the sequence of plant growth and development which ultimately reduces the survivability of plants. The physiological and biochemical mechanisms of tolerance to various osmotic and ionic components of salinity stress are evaluated at the cellular, organ and whole plant level. The course of adaptation towards salinity stress could be of various types such as avoidance, exclusion, extrusion, ion compartmentalization etc. Appropriate understanding of mechanism involved in salt tolerance at different levels in plant tissues provide a new opportunity to integrate physiological and biochemical knowledge to improve the salinity tolerance of fruit crops, especially from the nutritional aspect. Such information not only helpful in escalating the productivity in salt affected areas, but also facilitate in bringing relatively more salt affected areas under cultivation.

Keywords

Adaptation Fruit crops Salinity Tolerance mechanism

References

  1. Ahmad P, Jeleel, C. A., Azooz, M. M., Nabi, G. (2009). Generation of ROS And Non-Enzymatic Antioxidants During Abiotic Stress In Plants. Bot Res Intern. 2:11–20.
  2. Ahmad, P. And Prasad, M. N. V. (2012). Abiotic Stress Responses In Plants: Metabolism, Productivity And Stainability. Springer, New York.
  3. Allakhverdiev, S. I, Hayashi, H., Nishiyama, Y., Ivanov, A. G., Aliev, J. A., Klimov, V. V., Murata, N., Carpemtier, R. (2003). Glycinebetaine Protects The D1/D2/ Cyt B 559 Complex of Photosystem II Against Photo-Induced and Heat-Induced Inactivation. J. Plant Physiol. 160:41–49.
  4. Amri, E., Mirzaei, M., Moradi, M. And Zare, K. (2011). The Effects of Spermidine and Putrescine Polyamines on Growth of Pomegranate (Punica Granatum L. Cv. ‘Rabbab’) In Salinity Circumstance. International Journal of Plant Physiology and Biochemistry. 3(3): 43-49.
  5. Ashraf M, Foolad, M. R. (2007). Roles of Glycine Betaine and Proline In Improving Plant Abiotic Stress Resistance. Environ Exp Bot. 59:206–216.
  6. Atkinson, N. J, Urwin, P. E. (2012). The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. J. Exp. Bot. 63(10): 3523-3543.
  7. Babu, M. A., Singh. D. and Gothandam, K. M. (2012). The Effect of Salinity on Growth, Hormone and Mineral Elements in Leaf and Fruit of Tomato Cultivar PKM1. J. Anim. Plant. Sci. 22:159–164.
  8. Bae, H., Herman, E., Bailey, B., Bae, H. J., Sicher, R. (2005). Exogenous Trehalose Alters Arabidopsis Transcripts Involved in Cell Wall Modification, Abiotic Stress, Nitrogen Metabolism and Plant Defense. Physiol. Plant. 125(1): 114-126.
  9. Barba-Espin, G. Et Al. (2011). Understanding the Role of H2O2 During Pea Seed Germination: A Combined Proteomic and Hormone Profiling Approach. Plant, Cell and Environment. 34: 1907-1919.
  10. Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M. and Ben Abdullah, F. (2010). Exogenous Proline Effects on Photosynthetic Performance and Antioxidant Defense System of Young Olive Tree. Journal of Agricultural and Food Chemistry. 58(7): 4216-4222.
  11. Bernstein, L. (1980). Salt Tolerance of Fruit Crops. Agriculture Information Bulletin., No. 292. USDA. 1-7 Pp. 
  12. Bernstein, L., Francois, L. E. and Clark, R. A. (1972). Salt Tolerance of Ornamental Shrubs and Ground Covers. J. Am. Soc. Hort. Sci., 97: 550-566.
  13. Blumwald, E. and Poole, R. J., (1987). Salt Tolerance in Suspension Cultures of Sugar Beet Induction of Na+/H+ Antiport Activity at the Tonoplast by Growth in Salt. Plant Physiology. 83(4):884-887.
  14. Bouchereau, A., Aziz, A., Larher, F. and Martin-Tanguy, J. (1999). Polyamines and Environmental Challenges: Recent Development. Plant Sci. 140: 103-125.
  15. Brouwer, C., Goffeau, A. and Heibloem, M. (1985). Irrigation Water Management: Training Manual No. 1 – Introduction to Irrigation. Food and Agriculture Organization of the United Nations, Rome, Italy.
  16. Cabot, C, Sibole J. V, Barcelo, J., Poschenrieder, C. (2009). Abscisic Acid Decreases Leaf Na + Exclusion in Salt-Treated Phaseolus Vulgaris L. J. Plant Growth Regul. 28:187-192.
  17. Capell, T., Bassie, L., Christou,T. (2004). Modulation of the Polyamine Biosynthetic Pathway in Transgenic Rice Confers Tolerance to Drought Stress. USA. Proc. Natl. Acad. Sci. 101: 9909-    9914.
  18. Chaitanya, K. Y, Sundar D, Jutur P. P, Reddy A. R. (2003). Water Stress Effects on Photosynthesis in Different Mulberry Cultivars. Plant Growth Regulation. 40(1): 75-80.
  19. Chaitanya, K.V., Rama Krishna, Ch., Venkata Ramana, G. and Khasim Beebi, S.K. (2014). Salinity Stress and Sustainable Agriculture- A Review. Agri. Reviews. 35 (1): 34-41. DOI- 10.5958/J.0976-0741.35.1.004. 
  20. Chen, T. H. H., Murata, N. (2008). Glycinebetaine: An Effective Protectant Against Abiotic Stress in Plants. Trend Plant Sci. 13:499–505.
  21. Cooper, W. C. (1961). Toxicity And Accumulation of Salts in Citrus Trees on Various Rootstocks in Texas. Proc. Fla. State Hort. Soc. 74: 95–104.
  22. Cooper, W. C. and Gorton. B. S. (1952). Toxicity and Accumulation of Chloride Salts in Citrus on Various Rootstocks. Proc. Am. Soc. Hort. Sci. 59: 143–146.
  23. Cramer, G. R. and Quarrie, S. A. (2002). Abscisic Acid is Correlated with the Leaf Growth Inhibition of Four Genotypes of Maize Differing in their Response to Salinity. Funct Plant Biol. 29:111–115.
  24. Das, P., Nutan, K. K., Singla-Pareek, S. L. and Pareek, A. (2015). Understanding Salinity Responses and Adopting ‘Omics-Based’approaches to Generate Salinity Tolerant Cultivars of Rice. Frontiers in Plant Science. 6.
  25. Davenport, R., James, R., Zakrisson-Plogander, A., Tester, M. and Munns, R. (2005). Control of Sodium Transport in Durum Wheat. Plant Physiology. 137: 807-818.
  26. Diaz-Vivancos, P. Et Al. (2008). Alteration in the Chloroplastic Metabolism Leads to ROS Accumulation in Pea Plants in Response to Plum Pox Virus. Journal of Experimental Botany. 59: 2147-2160.
  27. Dubey, A.K., Singh, A.K. and Srivasta, M. (2007). Salt Stress Studies in Mango- A Review. Agricultural Reviews. 28:75-78.
  28. El-Mashad, A. A. A. and Mohamed, H. I. (2012). Brassinolide Alleviates Salt Stress and Increases Antioxidant Activity of Cowpea Plants (Vigna Sinensis). Protoplasma. 249(3): 625-635.
  29. El-Mashad, A. A. A., Mohamed, H. I. (2011). Brassinolide Alleviates Salt Stress and Increases Antioxidant Activity of Cowpea Plants (Vigna Sinensis). Protoplasma. 249: 625–635.
  30. Embleton, T. W., Labanauskas, C. K. and Bitters, W. P. (1962). The Influence of Certain Rootstocks on the Concentration of Boron, Manganese and other Elements in Lemon Leaves and on Boron Toxicity Symptoms. Proc. Am. Soc. Hort. Sci. 80: 285–290.
  31. Evelin, H. Kapoor, R. and Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Annals of Botany. 104(7): 1263-1280.
  32. FAO. (2009). High Level Expert Forum – How to Feed the World in 2050. Economic and Social Department, Food and Agricultural Organization of the United Nations, Rome.
  33. Flowers, T. J. (2004). Improving Crop Salt Tolerance. Journal of Experimental Botany. 55(396): 307-319 Pp.
  34. Foyer, C. H. and Noctor, G. (2005). Redox Homeostasis and Antioxidant Signalling: A Metabolic Interface Between Stress Perception and Physiological Responses. Plant Cell. 17: 1866-1876.
  35. Fricke, W., Akhiyarova, G., Veselov, D. and Kudoyarova, G. (2004). Rapid and Tissue-Speci Fi C Changes In ABA and in Growth Rate in Response to Salinity in Barley Leaves. J. Exp. Bot. 55: 1115–1123.
  36. Furr, J. R. and Ream, C. L. (1968). Salinity Effects on Growth and Salt Uptake of Seedlings of the Date, Phoenix Dactylifera L. Proc. Am. Soc. Hort. Sci. 92: 268273.
  37. Gadallah, M. A. A. (1999). Effect of Proline and Glycinebetaine on Vicia Faba Responses to Salt Stress. Biol Plant 42: 249-257.
  38. Greenway, H., Munns, R. (1980). Mechanisms of Salt Tolerance in Non-Halophytes. Annual Review of Plant Physiology. 31: 149-190.
  39. Grieve, A. M., Walker, R. R. (1983). Uptake and Distribution of Chloride, Sodium and Potassium Ions in Salt-Stressed Citrus Plants. Australian Journal of Agricultural Research. 34: 133-143.
  40. Guo, K. M., Babourina, O. and Rengel, Z. (2009). Na+/H+ Antiporter Activity of the SOS1 Gene: Lifetime Imaging Analysis and Electrophysiological Studies on Arabidopsis Seedlings. Physiologia Plantarum. 137(2): 155-165.
  41. Halfter, U., Ishitani, M. and Zhu, J. K., (2000). The Arabidopsis SOS2 Protein Kinase Physically Interacts with and is Activated by the Calcium-Binding Protein SOS3. Proceedings of the National Academy of Sciences. 97(7): 3735-3740.
  42. Hasanuzzaman, M., Nahar, K. and Fujita, M. (2013). Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. In Ecophysiology and Responses of Plants Under Salt Stress. Springer, New York. 25-87.
  43. Hasegawa, P. M., Bressan, R. A., Zhu. J. K., Bohnert, H. J. (2000). Plant Cellular and Molecular Responses to High Salinity. Annual Review of Plant Physiology and Molecular Biology. 51(1): 463-499.
  44. Hayat, S., Ahmad, A. (2011). Brassinosteroids: A Class of Plant Hormone. Springer. 403-37.
  45. Hernandez, J. A. et al. (2004a). Oxidative Stress Induced by Long-Term Plum Pox Virus Infection in Peach (Prunus Persica L. Cv. GF305). Physiologia Plantarum. 122: 486-495.
  46. Hernandez, J. A. et al. (2004b). Role of Hydrogen Peroxide and the Redox State of Ascorbate in the Induction of Antioxidant Enzymes in Pea Leaves under Excess Light Stress. Functional Plant Biology. 31: 359-368.
  47. Hooda, P. S., Sindhu, S. S., Mehta, P. K. and Ahlawat, V. P. (1990). Growth, Yield and Quality of Ber (Zizyphus Mauritiana Lamk.) as Affected by Soil Salinity. J. Hort. Sci. 65: 589-593.
  48. Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., Murata, Y. (2011). Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis. Plant Physiol. 156: 430–438.
  49. Houimli, S. I. M., Denden, M., Mouhandes, B. D. (2010). Effects of 24-Epibrassinolide on Growth, Chlorophyll, Electrolyte Leakage and Proline by Pepper Plants Under Nacl-Stress. Eur. Asia. J. Biosci. 4: 96–104.
  50. Jamalian, S., Gholami, M. and Esna-Ashari, M. (2013). Abscisic Acid-    Mediated Leaf Phenolic Compounds, Plant Growth and Yield is Strawberry Under Different Salt Stress Regimes. The oretical and Experimental Plant Physiology. 25(4): 291-299.
  51. Jeschke, W. D., Peuke, A. D., Pate And J. S. and Hartung, W. (1997). Transport, Synthesis and Catabolism of Abscisic Acid (ABA) in Intact Plants of Castor Bean (Ricinus Communis L.) under Phosphate De Fi Ciency and Moderate Salinity. J. Exp. Bot. 48: 1737–1747.
  52. Kang, D. J., Seo. Y. J., Lee. J. D., Ishii, R., Kim, K. U., Shin, D. H., Park, S. K., Jang, S. W., Lee, I. J. (2005). Jasmonic Acid Differentially Affects Growth, Ion Uptake and Abscisic Acid Concentration in Salt-Tolerant and Salt-Sensitive Rice Cultivars. J. Agron. Crop. Sci. 191: 273–282.
  53. Kauskabe, Y. L., Nada, S., Hara, S. (2004). Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress-Regulated Genes in Transgenic Arabidopsis Thaliana, Plant Cell Physiol. 45: 712-722.
  54. Khedr, A. H. A., Abbas, M. A., Wahid, A. A. A., Quick, W. P., Abogadallah, G. M. (2003). Proline Induces the Expression of Salt-Stress-Responsive Proteins and May Improve the Adaptation of Pancratium Maritimum L. to Salt-Stress. J. Exp. Bot. 54: 2553–2562.
  55. Kulkarni, D. S., Saranmath, P. A. and Shanthappa, P. B. (1973). Preliminary Studies on Quality of Underground Waters on Growth and Yield of Coconut (Cocos Nucifera). Mysore J. Agric. Sci. 7: 122-124.
  56. Liu, J. And Zhu, J.K., (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science. 280 (5371): 943-1945.
  57. López-Gómez, M., Lluch, C. (2012). Trehalose and Abiotic Stress Tolerance. In: [Ahmad P, Prasad M. N. V. (Eds)] Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer, New York. 253–265 Pp.
  58. Mäkelä, P., Kärkkäinen, J., Somersalo, S. (2000). Effect of Glycine Betaine on Chloroplast Ultrastructure, Chlorophyll and Protein Content and Rubpco Activity in Tomato Grown under Drought or Salinity. Biol Plant. 43: 471–475.
  59. Matysik, J., Alia Bhalu, B. and Mohanty, P. (2002). Molecular Mechanisms of Quenching of Reactive Oxygen Species by Proline Under Stress in Plants. Curr. Sci. 82: 525-532.
  60. Mccord, J. M. (2000). The Evolution of free Radicals and Oxidative Stress. The American Journal of Medicine. 108(8): 652-659.
  61. Mickelbart, M. V., Chapman, P. and Collier-Christian, L., (2006). Endogenous Levels and Exogenous Application of Glycinebetaine to Grapevines. Scientia Horticulturae.111(1): 7-16 Pp.
  62. Miller, G. et al. (2010). Reactive Oxygen Species Homeostasis and Signalling During Drought and Salinity Stresses. Plant Cell and Environment. 33: 453-497.
  63. Møller, I. M. and Sweetlove, L. J. (2010). ROS Signalling – Specificity is Required. Trends in Plant Science. 15: 370-374.
  64. Munns, R. (2002). Comparative Physiology of Salt and Water Stress. Plant, Cell and Environment. 25(2): 239–250.
  65. Munns, R. and Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 59: 651-681.
  66. Munns, R., Schachtman, D. and Condon, A. (1995). The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Functional Plant Biology. 22(4): 561-569.
  67. Pandey, P., Singh, A. K., Dubey, A. K. and Dahuja, A. (2014). Biochemical and Salt Ion Uptake Responses of Seven Mango (Mangifera Indica L.) Rootstocks to Nacl Stress. Journal of Horticultural Science and Biotechnology. 89(4): 367-372.
  68. Pareek-Singla, S. L., Grover, A. (1997). Salt Responsive Proteins/    Genes in Crop Plants. In: Strategies for Improving Salt Tolerance in Higher Plants. [Jaiwal P. K., Singh, R. P., Gulati, A. (Eds.)]: Oxford and IBH Publishing Co., New Delhi.
  69. Parida, A. K., Das, A. B. (2005). Salt Tolerance and Salinity Effect on Plants: A Review. Ecotoxicol Environ Saf. 60: 324-349.
  70. Parida, A. K., Das, A. B. and Das, P. (2002). Nacl Stress Causes Changes in Photosynthetic Pigments, Proteins and other Metabolic Components in the Leaves of a True Mangrove, Bruguiera Parviflora, In Hydroponic Cultures. Plant Biol. 45: 28–36.
  71. Patil, P. K. and Patil, V. K. (1982). Salinity Tolerance of Pomegranate. J. Maharashtra Agric. Univ. 7 (3): 268-269.
  72. Patil, P. K. and Patil, V. K. (1983). Salinity Tolerance in Fig (Ficus Carica L.). Punjabrao Krishi Vidyapeeth Res. J. 7(1): 12-14.
  73. Patil, P. K., Patil, V. K. and Ghonsikar, C. P. (1984). Effect of Soil Salinity on Growth and Nutritional Status of Guava (Psidium Guajava L.). Intern. J. Trop. Agric. 2: 337-344.
  74. Pitzschke, A. and Hirt, H. (2006). Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants. Plant Physiology. 141(2): 351-356.
  75. Quintero, F. J., Ohta, M., Shi, H., Zhu, J. K. and Pardo, J. M., (2002). Reconstitution in Yeast of the Arabidopsis SOS Signaling Pathway for Na+ Homeostasis. Proceedings of the National Academy of Sciences. 99(13): 9061-9066.
  76. Rajendran, K., Tester, M. And Roy, S. J. (2009). Quantifying the Three Main Components of Salinity Tolerance in Cereals. Plant Cell and Environment. 32(3): 237-249.
  77. Schroeder, J. I., Delhaize, E., Frommer, W. B., Guerinot, M. L., Harrison, M. J., et al, Y. F., (2013). Using Membrane Transporters to Improve Crops for Sustainable Food Production. Nature. 497(7447): 60-66.
  78. Shanker. A. K., Venkateswarlu, B. (2011). Abiotic Stress in Plants – Mechanisms and Adaptations. Tech, Rijeka, 9p.
  79. Shannon, M. C. (1998). Adaptation of Plant to Salinity. Adv. Agron. 60: 75-119.
  80. Shen, W. Y., K. Nada and Tachibana, S. (2000). Involvement in Polyamines in the Chilling Tolerance in Cucumber Cultivars. Plant Physiol. 124: 431-439.
  81. Singh, N. K., Bracken, C. A., Hasegawa, P. M., Handa, A. K., Buckel S., et al. (1987). Characterization of Osmotin. A Thaumatin-    Like Protein Associated with Osmotic Adjustment in Plant Cells. Plant Physiol. 85: 529–536.
  82. Smirnoff, N. and Cumbes, Q. J., (1989). Hydroxyl Radical Scavenging Activity of Compatible Solutes. Phytochemistry. 28(4): 1057-1060.
  83. Smirnoff, N. Pallanca, J. E. (1996). Ascorbate Metabolism in Relation to Oxidative Stress. Biochem Soc Trans. 24: 472–478.
  84. Taha, M. W., El Sewey, A. and Fadliah, Z. G. (1972). Salt Tolerance of Grape, Guava and Olive Plants. Alexandria J. Agric. Res. 20: 123-134.
  85. Tonon, G., Kevers, C., Faivre-Rampant, O., Grazianil, M. and Gaspar, T. (2004). Effect of Nacl and Mannitol Iso-Osmotic Stresses on Prolin and Freepolyamine Levels in Embryogenic Fraxinus Angustifolia Callus. J. Plant Physiol. 161: 701-708.
  86. Troncoso De Arce, A., Matte, C., Cantos, M. and Lavee, S., (1999). Evaluation of Salt Tolerance of in vitro-Grown Grapevine Rootstock Varieties. Vitis. 38(2): 55-60.
  87. Tuteja, N. (2007). Abscisic Acid and Abiotic Stress Signaling. Plant Signal Behav. 2: 135–138.
  88. Upreti, K. K. and Murti, G. S. R. (2010). Response of Grape Rootstocks to Salinity: Changes in Root Growth, Polyamines and Abscisic Acid. Biol Plantarum. 54(4): 730-734. 
  89. Vinocur, B. and Altman, A., (2005). Recent Advances in Engineering Plant Tolerance to Abiotic Stress: Achievements and Limitations. Current Opinion in Biotechnology. 16(2): 123-132.
  90. Walker, R. R, Toèroèkfalvy, E., Grieve, A. M., Prior, L. D. (1983). Water Relations and Ion Concentrations of Leaves on Salt-    Stressed Citrus Plants. Australian Journal of Plant Physiology. 10: 265-277.
  91. Zeid, I. M. (2009). Trehalose as Osmoprotectant for Maize under Salinity-Induced Stress. Res J Agric Biol Sci. 5: 613-622.
  92. Zekri, M. and Parsons, L. R. (1992). Salinity Tolerance of Citrus Rootstocks: Effects of Salt on Root and Leaf Mineral Concentrations. Plant and Soil. 147: 171-181.
  93. Zhu, J.-K. (2007). Plant Salt Stress. Encyclopedia of Life Sciences. Doi:10.1002/9780470015902.A0001300.Pub2.

Global Footprints