Seed Priming: An old empirical technique with new contemporary perspectives in respect to Pisum sativum L: A review

DOI: 10.18805/ag.R-1906    | Article Id: R-1906 | Page : 136-142
Citation :- Seed Priming: An old empirical technique with new contemporary perspectives in respect to Pisum sativum L: A review.Agricultural Reviews.2019.(40):136-142
Lokesh Gour, R.S. Ramakrishnan, Nitesh Kumar Panwar, Radheshyam Sharma, Nidhi Pathak and G.K. Koutu gourjnkvv@gmail.com
Address : Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh, India
Submitted Date : 29-05-2019
Accepted Date : 17-06-2019

Abstract

Pea is a small duration pulse crop which gives a different performance in field emergence and seed yield at different soil type and environment. Major factors that deteriorate pea yield are a fungal infection at germination, low nodules formation and slow food stimulation process to seeds. For surpassing such a problem, seed priming is the best solution. Seed priming is of many types depending upon the priming material like chemicals, bio-agents, water, nanoparticles, radiations, growth hormones and many more. Using different priming technique, seed’s hormonal and metabolomic process can be altered and managed in a positive way, resulting in better germination and appropriate plant stand with greater biological and seed yield. This review deals with different priming techniques and their effect on pea crop’s germination, phenological and yield attributing traits for getting good crop establishment and better yield performance.

Keywords

Pisum sativum priming germination synchrony sodium molybdate calcium chloride and potassium chloride.

References

  1. Akeson, W.R., Henson, M.A., Freytag, A.H. and Westfall, D.G. (1980). Sugar beet fruit germination and emergence under moisture and temperature stress. Crop Science 20: 735-739.
  2. Al-Karaki, G.N. (1998). Response of wheat and barley during germination to seed osmopriming at different water potentials. Journal of Agronomy and Crop Science, 181: 229-235.
  3. Aroubandi, H. (2016). The Effect of Priming Treatment on Yield Components of Pea (Greenaro). Hajar Aroubandi et al. International Journal of Institutional & Industrial Research 1 (1)10-14.
  4. Basra, S.M.A., Farooq, M. and Tabassum, R. (2005). Physiological and biochemical aspects of seed vigour enhancement treatments in fine rice (Oryza sativa L.). Seed Science and Technology 33:25–29.
  5. Beedi, S., Macha, S.I., Gowda, B., Kurnallikar, V. and Savitha, A.S. (2017). Effect of seed priming on growth and seed yield of kabuli chickpea cv., MNK – 1 (Cicer arietinum L.). International Journal of Chemical Studies 5(6): 541-544.
  6. Benamar, A., Tallon, C. and Macherel, D. (2003). Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Science Research 13: 3545.
  7. Bierhuizen, F. and Wagenvoort, W.A. (1974). Some aspects of seed germination in vegetables. I. The determination and application of heat sums and minimum temperature for germination. Scientia Horticulturae 2: 213-219.
  8. Bradford, K.J. (1986). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Horticulture Science (USA) 21:1105.
  9. Bray, C.M. (1995). “Biochemical Processes During the Osmopriming of Seeds, 767-789”. In: Seed development and germination (Eds. J. Kigel & G. Galili). Marcel Dekker, New York. 
  10. Bray, C.M., Davison, P.A., Ashraf, M. and Taylor, R.M. (1989). Biochemical  changes  during osmopriming  of  leek seeds. Annals of Botany 63: 185-193.
  11. Chauhan, R.P.S., Chauhan, C.P.S. and Kumar, D. (1980). Free proline accumulation in cereals in relation to salt tolerance. Plant and Soil 57: 167-175.
  12. Chen, K. and Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Science 180:212–220.
  13. Covell, S., Ellis, R.H., Roberts, E.H. and Summerfield, R.J. (1986). The influence of temperature on seed germination rate of legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany 37: 705-715.
  14. Dahal, P., Bradford, K.J. and Jones, R.A. (1990). Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. I. Germination at suboptimal temperature. Journal of Experimental Botany 41: 1431-1439.
  15. Danneberger, T.K., McDonald, M.B., Geron, C.A. and Kumari, P. (1992). Rate of germination and seedling growth of perennial ryegrass seed following osmoconditioning. Hortscience 27: 28-30.
  16. Davison, P.A. and Bray, C.M., (1991). Protein synthesis during osmopriming of leek (Allium porrum L.) seeds. Seed Science Research 1: 29-35.
  17. Dell’Aquila, A. and Bewley, J.D. (1989). Protein synthesis in the axes of polyethylene glycol treated pea seeds and during subsequent germination. Journal of Experimental Botany 40: 1001-1007.
  18. Dubey, S.C., Suresh, M. and Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control 118–127
  19. Dutta, P. (2018). Seed Priming: New Vistas and Contemporary Perspectives. Advances in Seed Priming, https://doi.org/10.1007/978-981-13-0032-5_1.
  20. ELKOCA, E. (2014). Osmo- and hydropriming enhance germination rate and reduce thermal time requirement of pea (Pisum sativum L. cv. Winner) seeds. Akademik Ziraat Dergisi 3(1):1-12.
  21. Elkoca, E., Haliloglu, K., Esikten, A. and Ercisli, S. (2007). Hydro- and osmopriming improve chickpea germination. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 57: 193-200.
  22. Evanari, M. (1984). Seed Physiology: Its History from antiquity to the beginning of the 20th  century. The Botanical Review 50: 119-142.
  23. Farooq, M., Basra, S.M.A. and Khan, M.B. (2007). Seed priming improves growth of nursery seedlings and yield of transplanted rice. Archives of Agronomy and Soil Science 53:311–322.
  24. Garcia-Huidobro, J., Monteith, J.L. and Squire, G.R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S. and H.). I. Constant temperature. Journal of Experimental Botany 33: 288-296.
  25. Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S. and Moghaddam, M. (2010). Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean (Phaseolus vulgaris L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj 38: 109-113.
  26. Ghassemi-Golezani, K., Sheikhzadeh-Mosaddegh, P., Valizadeh, M. (2008). Effects of hydro-priming duration and limited irrigation on field performance of chickpea. Research Journal of Seed Science 1: 34-40.
  27. Halpin-Ingham, B. and Sundstrom, F.J., 1992. Pepper seed water content, germination response and respiration following priming treatments. Seed Science and Technology, 20: 589-596.
  28. Hardegree, S.P. and  Emmerich, W. (1992). Effect of matric priming duration and priming water potential on germination of four grasses. Journal of Experimental Botany 43: 233-238.
  29. Hardegree, S.P. and Van Vactor, S.S. (2000). Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany 85: 379-390.
  30. Hardegree, S.P., Jones, T.A. and Van Vactor, S.S. (2002). Variability in thermal response of primed and nonprime seeds of squirrel tail [Elymus elymoides (Raf.) Swezey and Elymus multisetus (J.G. Smith) M.E. Jones]. Annals of Botany 89: 311-319.
  31. Hardegree, S.P., Van Vactor, S.S., Pierson, F.B. and Palmquist, D.E. (1999). Predicting variable-temperature response of non-dormant seeds from constant temperature germination data. Journal of Range Management 52: 83-91.
  32. Harris, D. (2006). 'On-Farm' Seed Priming. A key technology to improve the livelihoods of resource-poor farmers in marginal environments (extended version). DFID/PSP information booklet, English language version. CAZS Natural Resources, University of Wales, Bangor, UK.
  33. Harris, D., Joshi, A., Khan, P.A., Gothkar, P. and Sodhi, P.S. (1999). On-farm seed priming in semi-arid agriculture development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture 35:15–29.
  34. Harris, D., Joshi, A., Khan, P.A., Gothkar, P. and Sodhi, P.S. (1999). On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture 35: 15-29.
  35. Heydecker, W.J., Heydecker, J., Higgins and Gulliver, K. (1973). Accelerated germination by osmotic seed treatment, Nature 246: 42-46.
  36. Hutton, E.M. (1971). Variation in salt response between tropical pasture legumes. Sabrao Newsletter 3: 75-81.
  37. Johnson, S.E., Lauren, J.G., Welch, R.M. and Duxbury, J.M. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture 41:427-448.
  38. Kader, M.A. and Jutzi, S.C. (2002). Temperature, osmotic pressure and seed treatments influence imbibition rates in sorghum seeds. Journal of Agronomy and Crop Science 188: 286-290.
  39. Kaya, G., Demir, I., Tekin, A., Yasar, F. and Demir, K. (2010). Priming uygulamasinin biber tohumlarinin stress icakliklarinda çimlenme, yag asitleri, seker kapsami ve enzim aktivitesi üzerine etkisi. Tarim Bilimleri Dergisi 16: 9-16 
  40. Khalil, S.K., Mexal, J.G. and Murray, L.W. (2001). Germination of soybean seed primed in aerated solution of polyethylene glycol (8000). Online Journal of Biological Science 1: 105-107.
  41. Koutu, G.K., Rama Krishnan, R.S., Gour, L., Pathak, N. and Shivwanshi, R. (2019). Enhancement in seed yield and quality attributes due to different seed priming treatment in field Pea. Journal of Pharmacognosy and Phytochemistry SP2: 866-868
  42. Lewis, G., Schrirer, B., Mackinder, B. and Lock, M. (2005). “Legumes of the World”; Royal Botanical Gardens: Kew, United Kingdom.
  43. Lin, J.M. and Sung, J.M. (2001). Pre-sowing treatment for improving emergence of bitter gourd seedling under optimal temperatures. Seed Science and Technology 29: 39-50.
  44. Malnassy, P.G. (1971). Physiological and biochemical studies on a treatment hastening the germination of seeds at low temperature, Ph.D. thesis, Rutgers University, New Brunswick.
  45. Matarira, C.H., Makadho, J.C. and Mukahanana-Sangarwe, M. (2004). Vulnerability and adaptation of maize production to climate change in Zimbabwe, Ministry of Environment and Tourism, Zimbabwe.
  46. Mc Donald, M.D. (1999). Seed deterioration: physiology, repair and assessment, Seed Science and Technology 27: 177-183.
  47. McDonald, M.B. (2000). “Seed Priming, 287-325”. In: Seed Technology and Its Biological Basis (Eds. M. Black & J.D. Bewley). Sheffield Academic Press, Sheffield, UK. 
  48. Mohamed, H.A., Clark, J.A. and Ong, C.K. (1988). Genotypic differences in the temperature responses of tropical crops. II. Seedling emergence and leaf growth of groundnut (Arachis hypogaea L.) and pearl millet (Pennisetum typhoides S & H.). Journal of Experimental Botany 39: 1129-1135.
  49. Murray, G.A. (1989). Osmoconditioning carrot seed for improved emergence. Hortscience 24: 701.
  50. Murungu, F.S., Chiduza, C., Nyamuga, P., Clark, L.J., Whalley, W.R. and Finch, W.E. (2004). Effects of on-farm seed priming on consecutive daily sowing occasion on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop Research 89: 49-57.
  51. Parera, C.A. and Cantiliffe, D.J. (1994). Pre-sowing seed priming. Horticulture Review 16:109-141.
  52. Pill, W.G., Crossan, C.K., Frett, J.J. and Smith, W.G. (1994). Matric and osmotic priming of Echinacea purpurea (L.) Moench seeds. Scientia Horticulturae 59:37–44
  53. Rodriguez, C., Frias, J., Vidal-Valverde, C. and Hernandez, A. (2008). Correlations between some nitrogen fractions, lysine, histidine, tyrosine and ornithine contents during the germination of peas, beans, and lentils. Food Chemstry 108: 245-252.
  54. Singh, A., Jatav, A.L., Singh, P., Singh, B.A., Singh, P. and Sharma, S.K. (2017). Effect of seed priming treatments on seed quality parameters and storability of field pea (Pisum sativum L.). Journal of Pharmacognosy and Phytochemistry 6(5):161-163.
  55. Sivasubramaniam, K., Geetha, R., Sujatha, K., Raja, K., Sripunitha A. and Selvarani, R. (2011). Seed Priming: Triumphs and Tribulations. Madras Agricultural Journal 98 (7-9): 197-209.
  56. Sivritepe, H.O. and Dourado, A.M. (1995). The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds.  Annals of Botany 75: 165-171.
  57. Taylor, A.G., Allen, P.S., Bennett, M.A., Bradford, K.J., Burris, J.S. and Misra, M.K. (1998). Seed enhancements. Seed Science Research 8: 245–256.
  58. Umair, A., Safdar, A., Rifat Muhammad, H.A., Muhammad, J. (2011). Evaluation of seed priming in mungbean (Vigna radiata) for yield, nodulation and biological nitrogen fixation under rainfed conditions. African Journal of Biotechnology 10(79):18122-18129.
  59. Wilson, D.R., Jamieson, P.D., Jermyn, W.A. Hanson, R. (1985). Models of growth and water use of field peas (Pisum sativum L.). in: The pea crop: a basis for improvement. Hebblethwaite, P. D.; Heath, M. C.; Dawkins, T. C. K. ed. London, Butterworths 139-151.
  60. Yan, Y.T., Liang, W.T., Zheng, G.H. and Tang, P.S. (1989). Effect of low temperature imbibition on mitochondrion respiration and phosphorylation of PEG primed soybean seed. Acta Botanica Sinica 31: 441-448.
  61. Zheng, G.H., Wilen, R.W., Slinkard, A.E. and Gusta, L.V. (1994). Enhancement of canola seed germination and seedling emergence at low temperature by priming. Crop Science 34: 1589-1593.

Global Footprints