Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 41 issue 3 (september 2020) : 238-247

Potential of Mycovirus in the Biological Control of Fungal Plant Pathogens: A Review

I. Yimjenjang Longkumer, Md. Abbas Ahmad
1Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa-848 125, Bihar, India.
Cite article:- Longkumer Yimjenjang I., Ahmad Abbas Md. (2020). Potential of Mycovirus in the Biological Control of Fungal Plant Pathogens: A Review. Agricultural Reviews. 41(3): 238-247. doi: 10.18805/ag.R-1896.
Fungal pathogenic populations such as Sclerotinia, Rhizoctonia and Fusarium are ubiquitous and have broad range of host enabling them to cause a severe infection resulting in huge yield losses. Albeit the various tactics such as cultural, mechanical implemented to counteract the havoc, it still creates a formidable challenge to the researchers to keep the pathogenic population below threshold. From Eco-friendly sustenance perspective, Biological control can play a vital role in combination along with the other efficient tactics. In field condition various strains are available having two characters namely virulent and hypovirulent, the latter may exhibit hypovirulent nature genetically or due to the invasion of mycoviruses becomes hypovirulent. In both the cases are of interest to the researchers in studying the biological control exhibited by the mycoviruses. The biocontrol agents include Mycoviruses, which plays a significant role in infecting the virulent fungal pathogen by reducing their virulence giving to a phenomenon known as Hypovirulence. Their genome consist of mostly dsRNA and others include +ssRNA, -ssRNA and dsDNA. These studies in fungal and viral interaction can lead to the development of novel biological control strategies and help us to explore upto the molecular level.
  1. Açýkgöz, S., Döken, T., Erincik, Ö., Deðirmenci, F. (2009). Determination of hypovirulent isolates of Cryphonectria parasitica by dsRNA analysis in Aydýn Province, Turkey. Acta Horticulture. 866: 379-385.
  2. Allemann, C., Hoegger, P., Heiniger, U., Rigling, D. (1999). Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe assessed using restriction fragment length polymorphism (RFLP) markers. Molecular Ecology. 8: 843-854.
  3. Akýllý, S., Katýrcýoðlu, Y.Z., Maden, S. (2009). Vegetative compatibility types of Cryphonectria parasitica, causal agent of Chestnut Blight, in the Black Sea Region, Turkey. Forest Pathol. 39: 390-396.
  4. Akýllý, S., Katýrcýoðlu, Y.Z., Maden, S, (2011). Biological control of chestnut canker, caused by Cryphonectria parasitica, by antagonistic organisms and hypovirulent isolates. Turk J Agric For. 35: 515-523.
  5. Aksoy, M., Serdar, Ü., Soylu, A. (2005). Kestane fidanlarýnda kestane [Cryphonectria parasitica (Murrill) Barr.] karþý yapþlan uygulamalar. OMÜ Ziraat Fakültesi Dergisi. 20: 24- 9 (in Turkish).
  6. Aminian, P., Azizollah, A., Abbas, S., Naser, S. (2011). Effect of double-stranded RNAs on virulence and deoxynivalenol production of Fusarium graminearum isolates. Journal of Plant Protection Research. 51(1): 29-37.
  7. Bandy, B.P., Tavantzis, S.M. (1990). Effect of hypovirulent Rhizoctonia solani on Rhizoctonia disease, growth and development of potato plants. American Potato Journal. 67: 189-199.
  8. Bartholomäus, A., Wibberg, D., Winkler, A., Pühler, A., Schlüter, A. Varrelmann, M. (2016). Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. PLoS One. 11: e0165965.
  9. Bharathan, N., Saso, H., Gudipati, L., Bharathan, S., Whited, K., Anthony, K. (2005). Double-stranded RNA distribution and analysis among isolates of Rhizoctonia solani AG-2 to - 13. Plant Pathol. 54: 196-203.
  10. Botella, L., Tuomivirta, T.T., Hantula, J., Diez, J.J. (2012). Presence of viral dsRNA molecules in the Spanish population of Gremmeniella abietina. Journal of Agricultural Extension and Rural Development. 4: 211-213.
  11. Bouneb, M., Turchetti, T., Nannelli, R., Roversi, P.F., Paoli, F., Danti, R., Simoni, S. (2016). Occurrence and transmission of mycovirus Cryphonectria hypovirus 1 from dejecta of Thyreophagus corticalis (Acari, Acaridae). Fungal Biol. 120: 351-357.
  12. Brewer, M.T., Larkin, R.P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection. 24: 939-950.
  13. Carling, D.E., Baird, R.E., Gitaitis, R.D., Brainard, K.A., Kuninaga, S. (2002a). Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology. 92: 893-899.
  14. Carling, D.E., Kuninga, S., Brainard, K.A. (2002b). Hyphal anastomosis reactions, rDNA-ITS sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology. 92: 43-50.
  15. Castanho, B., Butler, E.E. (1978). Rhizoctonia decline: A degenerative disease of Rhizoctonia solani. Phytopathology. 68: 1505-1510.
  16. Çeliker, N.M., Onoður, E. (1998). Determining the hypovirulence in the isolates of chestnut blight [Cryphonectria parasitica (Murr.) Barr.] in Turkey, ‘First record’. J Turk Phytopathol. 27: 145-146.
  17. Çeliker, N.M., Onoður, E. (2009). Actual status of biological control studies on chestnut blight in Turkey. Acta Hortic. 866: 369-372.
  18. Çeliker, N.M., Onoður E (2011). Promising results on biological control of chestnut blight in Turkey. Tarým Bilimleri Dergisi. 17: 122-130 (in Turkish with an abstract in English).
  19. Chiba, S., Lin, Y.H., Kondo, H., Kanematsu, S., Suzuki, N., (2013). A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. J. Virol. 87: 6727-6738.
  20. Chiba, S., Salaipeth, L., Lin, Y.H. (2009). A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations and potential for biological control. J. Virol. 83: 12801-12812.
  21. Cho, W.K., Lee, K.M., Yu, J., Son, M., Kim, K.H. (2013). Insight into Mycoviruses Infecting Fusarium Species. Advances in Virus Research. 86: 273-288.
  22. Choi, G.H., Chen, B., Nuss, D.L. (1995). Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc. Natl. Acad. Sci. USA. 92: 305-309.
  23. Coenen, A., Kevei, F., Hoekstra, R.F. (1997). Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans. Genet. Res. 69: 1-10.
  24. Coppin, E., Debuchy, R., Arnaise, S., Picard, M. (1997). Mating types and sexual development in filamentous ascomycetes. Microbiology and Molecular Biology Reviews. 61: 411-428.
  25. Coºkun, H., Turchetti, T., Maresi, G., Santagana, A. (1999). Preliminary investigations into [Cryphonectria parasitica (Murr.) Barr.] isolates from Turkey. Phytopathol Mediterr. 38: 101-110.
  26. Darissa, O., Adam, G., Schäfer, W. (2012). A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. European Journal of Plant Pathology. 134: 181-189.
  27. Das, S., Falloon, R.E., Stewart, A., Pitman, A.R. (2014). Molecular characterisation of an endornavirus from Rhizoctonia solani AG-3PT infecting potato. Fungal Biology. 118: 924-934.
  28. Das, S., Falloon, R.E, Stewart, A., Pitman, A.R. (2016). Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Biology. 120(3): 338-350.
  29. Diepeningen, V.A.D., Debets, A.J., Hoekstra, R.F. (2006). Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genet. Biol. 43: 446-452.
  30. Ding, P., Liu, F., Xu, C., Wang, K. (2007). Transmission of Cryphonectria hypovirus to protect chestnut trees from chestnut blight disease. Biological Control. 40: 9-14.
  31. Dixit, R., Singh, R.B., Singh, H.B. (2015). Screening of antagonistic potential and plant growth promotion activities of Trichoderma spp. and fluorescent Pseudomonas spp. isolates against Sclerotinia sclerotiorum causing stem rot of French bean. Legume Research. 38: 375-381
  32. Döken, M. T., Açýkgöz, S., Erincik, Ö. (2009). Chestnut blight and evaluation of the feasibility of its biological control in the Aydýn Province, Turkey by using hypovirulence. Acta Hortic. 866: 373-378.
  33. Dong, X., Ji, R., Guo, X., Foster, S.J., Chen, H., Dong, C. (2008). Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta. 228: 331-340.
  34. Gamalero, E., Pivato, B., Bona, E., Copetta, A., Avidano, L., Lingua, G., Berta, G. (2010). Interactions between a fluorescent pseudomonad, an arbuscular mycorrhizal fungus and a hypovirulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants. Plant Biosystems. 144: 582-591.
  35. Ghabrial, S.A. (1994). New developments in fungal virology. Adv. Virus Res. 43: 303-308.
  36. Ghabrial, S.A., Castón, J.R., Jiang, D., Nibert, M.L., Suzuki, N. (2015). 50-plus years of fungal viruses. Virology. 479-480: 356-368. 
  37. Ghabrial, S.A., Suzuki, N., (2009). Viruses of plant pathogenic fungi. Ann. Rev. Phytopathol. 47: 353-384.
  38. Grente, M.J. (1965). Les formes hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. Acad. Agric. Fr. 51: 1033-1036.
  39. Gürer, M, Ottaviani, M.P., Cortesi, P. (2001). Genetic diversity of subpopulations of Cryphonectria parasitica in Turkey. Forest Snow and Landscape Research. 76: 383-386.
  40. Hamid, M.R., Xie, J., Wu, S., Maria, S.K., Zheng, D., Hamidou, A.A., Wang, Q., Cheng, J., Fu, Y., Jiang, D. (2018). A Novel Deltaflexivirus that Infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Viruses. 10: 295. doi: 10.3390/v10060295
  41. He, H., Chen, X., Li, P., Qiu, D., Guoa, L. (2018). Complete genome sequence of a Fusariumgraminearum double-stranded RNA virus in a newly proposed family, Alternaviridae. Genome Announc. 6:e00064-18. https://doi.org/10.1128/ genomeA.00064-18.
  42. Hegedus, D.D., Rimmer, S.R. (2005). Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiology Letters. 251: 177-184.
  43. Heiniger, U., Rigling, D. (1994). Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32: 581-599.
  44. Hillman, B.I., Supyrani, S., Kondo, H., Suzuki, N., (2004). A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J. Virol. 78: 892-898.
  45. Hillman, B.I., Suzuki, N. (2004) Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63: 423-472.
  46. Hyder, R., Pennanen, T., Hamberg, L., Vainio, E.J., Piri, T., Hantula, J. (2013). Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. Fungal Ecology. 6: 387-396.
  47. ICTV. (2014). International committee on taxonomy of viruses. Retrieved March 10, 2015, from http://ictvonline.org/index.asp.
  48. Ihrmark, K., Johannesson, H., Stenström, E., Stenlid, J. (2002). Transmission of double-stranded RNA in Heterobasidion annosum. Fungal Genetics and Biology. 36: 147-154.
  49. Jadhav, B., Sarika, R.B., George, P. (2019). Molecular characteri zation of Fusarium oxysporum causing chickpea wilt by internal transcribed spacer (ITS) Marker. Legume Research. DOI:10.18805/LR-4151. 
  50. Jain, S.K., Khilari, K., Ali, M., Singh, R. (2014). Response of Fusarium monoliforme- the causal organism of Bakanae Disease of Rice against different fungicides. Biosca. 9: 413-6.
  51. Khalifa, M.E., Pearson, M.N. (2014a). Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology. 464-465: 441-449.
  52. Khalifa, M.E., Pearson, M.N. (2014b). Molecular characterisation of an endornavirusinfecting the phytopathogen Sclerotinia sclerotiorum. Virus Res. 189: 303-309.
  53. Khalifa, M.E., Pearson, M.N. (2014c). Molecular characterisation of novel mito viruses associated with Sclerotinia sclerotiorum. Arch. Virol. 159: 3157-3160.
  54. Kim, K.S., Min, J.Y., Dickman, M.B. (2008). Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions. 21: 605-612.
  55. Kotakadi, V.S., Gaddam, S., Gopal, S.D.V.R. (2012). Serological tests for detection of sunflower necrosis Tospo virus causing necrosis disease of sunflower (Helianthus annus). Bioscan. 7: 543-545.
  56. Krstin, L., Katani, Z., Ježi, M., Poljak, I., Nuskern, L., Matkovi, I., Idžojti, M., Pericab, M.C. (2016). Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. Pest Manag Sci. 73: 582-589.
  57. Larkin, R.P., Tavantzis, S. (2013). Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am. J. Potato Res. 90: 261-270.
  58. Larson, T.G., Choi, G.H., Nuss, D.L. (1992). Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J. 11: 4539-4548.
  59. Li, K., Zheng, D., Cheng, C., Chen, T., Fu, Y., Jiang, D., Xie, J. (2016). Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Research. 219: 92-99.
  60. Li, P., Zhang, H., Chen, X., Qiu, D., Guo, L. (2015). Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology. 481: 151-160.
  61. Li, P., Lin, Y., Zhang, H., Wang, S., Qiu, D., Guo, L. (2016). Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology. 489: 86-94.
  62. Li, Z., Chen, L., Meiling, Z., Mei, Z., Erxun, Z. (2018). Diversity of dsRNA viruses infecting rice sheath blight fungus Rhizoctonia solani AG-1 IA. Rice Science. 25: 57-60.
  63. Lin, Y. H., Chiba, S., Tani, A., Kondo, H., Sasaki, A., Kanematsu, S., Suzuki, N., (2012). A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology. 426: 42-50.
  64. Lin, Z., Xu, S., Que, Y., Wang, J., Comstock, J.C. (2014). Species-specific detection and identification of Fusarium species complex, the causal agent of Sugarcane Pokkah Boeng in China. PLoS ONE. 9: e104195.
  65. Liu, A.R., Chen, S.C., Lin, X.M., Wu, S.Y., Xu, T., Cai, F.M., Raesh, J. (2010). Endophytic Pestalotiopsis species spp. associated with plants of Palmae, Rhizophoraceae, Planchonellae and Podocarpaceae in Hainan, China. Afr. J. Microbiol. Res. 4: 2661-2669.
  66. Liu, H., Fu, Y., Jiang, D., Li, G., Xie, J., Peng, Y., Yi, X., Ghabrial, S.A. (2009). A novel mycovirus that is related to the human pathogen Hepatitis E virus and rubilike viruses. J. Virol. 83: 1981-1991.
  67. Liu, Y.C., Linder-Basso, D., Hillman, B.I., Kaneko, S., Milgroom, M.G. (2003). Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol. Ecol. 12: 1619-1628.
  68. Marzano, S.Y., Hobbs, H.A., Nelson, B.D., Hartman, G.L., Eastburn, D.M., McCoppin,N. K., Domier, L. L. (2015). Transfection of Sclerotinia sclerotiorum with in vitrotranscripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J. Virol. 89: 5060-5071.
  69. Merkel, H. W. (1905). A Deadly Fungus on The American chestnut, In: New York Zoological Society 10th Annual VOL. 56, 1992 Report. New York Zoological Society, Bronx, N.Y. p. 97-103.
  70. Milgroom, M.G. and Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology. 42: 311-338.
  71. Milgroom, M.G., Hillman, B. I. (2011). The ecology and evolution of fungal viruses. In: Studies in viral ecology [C. J. Hurst (Ed.)], Hoboken, NJ: Wiley-Blackwell. (Vol. 1, pp. 217-253).
  72. Mondal, B., Khatua, D.C., Hansda, S., Sharma, R. (2015). Addition to the host range of Sclerotinia sclerotiorum in West Bengal. Sch. Acad. J. Biosci. 3: 361-364.
  73. Nagaraj, B.T., Sunkad, G., Pramesh, D., Naik, M.K., M.B. Patil. (2017). Host Range Studies of Rice Sheath Blight Fungus Rhizoctonia solani (Kuhn). Int. J. Curr. Microbiol. App. Sci. 6: 3856-3864.
  74. Nannelli, R., Turchetti, T. (1999). Mites as carriers of hypovirulent strains of the chestnut blight fungus (Cryphonectria parasitica). Redia. 82: 89-98.
  75. Nibert. M.L., Ghabrial, S.A., Maiss, E., Lesker, T., Vainio, E.J. (2014). Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 188: 128-141. 
  76. Park, S.M., Choi, E.S., Kim, M.J., Cha, B.J., Yang, M.S., Kim, D.H. (2004). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica andevidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51: 1267-1277.
  77. Park, Y., James, D., Punja, Z.K. (2005). Co-infection by two distinct totivirus-like doublestranded RNA elements in Chalara elegans (Thielaviopsis basicola). Virus Research. 109: 71-85.
  78. Pearson, M.N., Beever, R.E., Boine, B., Arthur, K. (2009). Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 10: 115-128.
  79. Ran, H., Liu, L., Li, B., Cheng, J., Fu, Y.,Jiang, D., Xie, J. (2016). Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virology Journal. 13: 92.
  80. Riad, E.M.R.S., Zeidan, E.S.H. (2015). First record of core rot on apple fruit CV. Anna 106 local cultivar in Egypt. J Agric Technol. 11: 1371-80.
  81. Roossinck, M.J. (2015a). Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. Journal of Virology. 89: 6532-6535.
  82. Roossinck, M.J. (2015b). Plants, viruses and the environment: Ecology and mutualism. Virology. 479-480C: 271-277.
  83. Rusli, M.H., Idris, A.S., Cooper, R.M. (2015). Evaluation of Malaysian oil palm progenies for susceptibility, resistance or tolerance of Fusarium oxysporum f. sp. elaeidis and defense-related gene expression in roots. Plant Pathol. 64: 638-47.
  84. Sasaki, A., Kanematsu, S., Onoue, M., Oikawa, Y., Nakamura, H., Yoshida, K. (2007). Artificial infection of Rosellinia necatrix with purified virus particles of a member of the genus Mycoreovirus reveals its uneven distribution in single colonies. Phytopathology. 97: 278-286.
  85. Shapira, R., Choi, G.H., Nuss, D.L. (1991). Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. The EMBO Journal. 10: 731-739.
  86. Simoni, S., Nannelli, R., Roversi, P.F., Turchetti, T., Bouneb, M. (2014). Thyreophagus corticalis as a vector of hypovirulence in Cryphonectria parasitica in chestnut stands. Exp. Appl. Acarol. 62: 363–375.
  87. Sinden, J.W., Hauser, E. (1950). Report of two new mushroom diseases. Mushroom Sci. 1: 96-100.
  88. Sinha, B., Tarafdar, J. (2007). A study on the cause of sweet potato virus disease in West Bengal. Bioscan. 2: 163-167.
  89. Supyani, Gutomo, H.S. (2014). Hypovirulent isolates of Rhizoctonia solani collected from rice in Karanganyar regency, Central Java, Indonesia. Journal of Agricultural and Biological Science. 9: 19-23.
  90. Supyani, S., Widadi, S. (2015). Hypovirulent isolates of Fusarium collected from chili crops in Boyolali Regency, Central Java, Indonesia. Agrivita. 37: 67-74.
  91. Suzuki, N., Supyani, S., Maruyama, K., Hillman, B. I. (2004). Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. Journal of General Virology. 85: 3437-3448.
  92. Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology. 158: 649-658.
  93. Turina, M., Rostagno, L. (2007) Virus-induced hypovirulence in Cryphonectria parasitica: still an unresolved conundrum. J. Plant Pathol. 89: 165–178.
  94. Gayathri, U., Ramasamy, V. (2019). Utilization of liquid fertilizers for Agro-industrial waste management and reducing challenges through Nano-encapsulation-A review. Indian J. Agric. Res. 53: 641-645.
  95. Wang, L., Zhang, J., Zhang, H., Qiu, D., Guo, L. (2016). Two novel relative double-stranded RNA mycoviruses infecting Fusariumpoae strain SX63. Int. J. Mol. Sci. 17: 641.
  96. Wang, S., Kondo, H., Liu, L., Guo, L., Qiu, D. (2012). A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusariumgraminearum. Virus Res. 174: 69-77.
  97. Wang, M., Wang, Y., Sun, X., Cheng, J., Fu, Y., Liu, H. (2015). Characterization of a novel megabirnavirus from Sclerotinias clerotiorum reveals horizontal gene transfer from ssRNA virus to dsRNA virus. J. Virol. 89: 8567-8579. 
  98. Williams, B., Kabbage, M., Kim, H.J., Britt, R., Dickman, M.B. (2011). Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens. 7: e1002107. https://doi.org/10.1371/journal. ppat. 1002107
  99. Wu, S., Cheng, J., Fu, Y., Chen, T., Jiang, D., Ghabrial, S. A. (2017). Virus-mediated suppression of host non-self-recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathogens. 13: e1006234. DOI: 0.1371/journal. ppat.1006234.
  100. Xiao, X., Cheng, J., Tang, J., Fu, Y., Jiang, D., Baker, T. S., Ghabrial, S.A., Xieb, J. (2014). A Novel Partitivirus That Confers Hypovirulence on Plant Pathogenic Fungi. Journal of Virology. 88: 10120-10133.
  101. Xie, J., Ghabrial, S.A. (2012). Molecular characterizations of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology. 428: 77-85.
  102. Xie, J.T., Jiang, D.H. (2014). New Insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 52: 45-68. 
  103. Xie, J., Wei, D., Jiang, D., Fu, Y., Li, G., Ghabrial, S. A., Peng, Y. (2006). Characterization of debilitation associated mycovirus infecting the plant pathogenic fungus Sclerotinia sclerotiorum. J. General Virol. 87: 241-249.
  104. Xie, J., Xiao, X., Fu, Y., Liu, H., Cheng, J., Ghabrial, S.A., Li, G., Jiang, D. (2011). A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology. 418: 49-56.
  105. Xu, Z., Wu, S., Liu, L., Cheng, J., Fu, Y., Jiang, D., Xie, J., (2015). A mitovirus related toplant mitochondrial gene confers hypovirulence on the phytopathogenicfungus Sclerotinia sclerotiorum. Virus Res. 197: 127–136.
  106. Yphantis, D.A., Dainko, J.L., Schlenk, F. (1967). Effect of some proteins on the yeast cell membrane. J. Bacteriol. 94: 1509-1515.
  107. Yu, J., Kwon, S.J., Lee, K.M., Son, M., Kim, K.H. (2009). Complete nucleotide sequence of double-stranded RNA viruses from Fusariumgraminearum strain DK3. Arch Virol. 154: 1855.
  108. Yu, J. S., Lee, K.M., Son, M.I., Kim, K.H. (2011). Molecular characterization of Fusarium graminearum virus 2 isolated from Fusarium graminearum strain 98-8-60. The Plant Pathology Journal. 27: 285-290.
  109. Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S.A., Li, G., Peng, Y., Xie, J., Cheng, J., Huang, J., Yi, X. (2010). A geminivirus related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. National Acad. Sci. USA. 107: 8387-8392.
  110. Yua, X., Li, B., Fu, Y., Xie, J., Cheng, J., Ghabrialc, S. A., Li, L., Yi, X., Jianga, D. (2013). Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences, 2013. Pp: 1-6.
  111. Zhang, H., Mallik, A., Zeng, R.S. (2013). Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum) role of plant volatiles. J Chem Ecol. 39: 243–52.
  112. Zheng, L., Liu, H. Q., Zhang, M.L., Cao, X., Zhou, E.X. (2013). The complete genomic sequence of a novel mycovirus from Rhizoctonia solani AG-1 IA strain B275. Arch Virol. 158: 1609-1612.
  113. Zheng, L., Zhang, M.L., Chen, Q. G., Zhu, M.H., Zhou, E.X. (2014). A novel mycovirus closely related to viruses in the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus Rhizoctonia solani. Virology. 456/457: 220-226.
  114. Zhong, J., Chen, C.Y., Gao, B.D. (2015). Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes. 51: 167-170.

Editorial Board

View all (0)