Male Sterility and its Commercial Exploitation in Hybrid Seed Production of Vegetable Crops: A Review

DOI: 10.18805/ag.R-1880    | Article Id: R-1880 | Page : 261-270
Citation :- Male Sterility and its Commercial Exploitation in Hybrid Seed Production of Vegetable Crops: A Review.Agricultural Reviews.2019.(40):261-270
Pramod Sharma, Sunil A. Nair and Payal Sharma sharmapramod827@gmail.com
Address : Department of Seed Science and Technology, Dr. Y S Parmar University of Horticulture and Forestry, Nauni-173 230, Himachal Pradesh, India.
Submitted Date : 27-02-2019
Accepted Date : 2-12-2019

Abstract

Male sterility is described as absence of functional pollen grains in hermaphrodite flowers facilitating large scale production of hybrid seeds in vegetable crops. It eases hybrid seed production at commercial level in crops like tomato, chilli, capsicum, carrot, onion, cabbage, cauliflower and cucurbits. Male sterility would reduce the cost of hybrid seed production by limiting the labour making it efficient and economical. Incorporation of biotechnological tools in conventional plant breeding techniques would aid the breeders in limiting the drawbacks surrounding exploitation of male sterility for development of new hybrids. The present review is an attempt to summarize and to know the commercial utilization of male sterile line in hybrid seed production of vegetables.

Keywords

Functional pollen grains Hybrid seeds Vegetable crops

References

  1. Arumugam, N., Mukhopadhyay, A., Gupta, V., Pental, D., Pradhan, A.K. (1996). Synthesis of hexaploid (AABBCC) somatic hybrids: a bridging material for transfer of four cytoplasmic male sterility to different Brassica species. Theoretical Applied Genetics. 92: 762-768. 
  2. Bach, I.C., Olesen, A., Simon, P.W. (2002). PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica. 127:353-365.
  3. Bannerot, H., Boulidard, L., Cauderon, Y., Temp, J. (1974). Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. In: Proceedings of the. Eucarpia Meeting. Cruciferae, Scottland Horticultural Research Institute, Dundee, pp. 52-54. 
  4. Bhadula S.K. and Sawhney V.K. (1987). Esterase activity and isozymes during the ontogeny of the stamens of male fertile Lycopersicon esculentum Mill. male sterile stamenless -2 mutant and the low temperature reverted mutant. Plant Science. 52:187-194.
  5. Bohn, G.W. and Principe, G.A. (1962). A second male-sterility gene in the muskmelon. Journal of Heredity. 55: 211-215. 
  6. Cardi, T. and Earle, E.D. (1997). Production of new CMS Brassica oleracea by transfer of „Anand cytoplasm from B. rapa through protoplast fusion. Theoretical and Applied Genetics. 94: 204-212. 
  7. Chase, C. and Babay-Laughnan, S. (2004). Cytoplasmic male and fertility restoration by nuclear genes. In Molecular Biology Biotechnology of Plant Organelles, [H. Daniell and C. Chase, eds] (Kluwer Academic Publishers: Dordrecht, The Netherlands), pp. 593–622
  8. Chaudhari, H.K. (1992). Elementary Principles of Plant Breeding. Oxford & IBH Publ. Co. Pvt. Ltd., New Delhi. Pp.119-135. 
  9. Crips, C. and Tapsel, C.R. (1993). Cauliflower. In: Kalloo and Bergh BO (eds), Genetic Improvement of Vegetable Crops. Pergamon Press, U.K., pp. 157-177. 
  10. Daskalov, S. (1972). Male sterile pepper (C. annuum L.) mutants and their utilisation in heterosis breeding. Proceedings of the Eucarpia meeting on Capsicum. 7: 202-210. 
  11. Davey J.C. (1999). Deploying male-sterility as a grouping character in carrot distinctness, uniformity and stability trials. In: Proceedings of the Third International Symposium on the Taxonomy of Cultivated Plants. Edinburgh, UK, 20-    26 July, 1998: 431-433
  12. Davis, E. (1966). An improved method of producing hybrid onion seed. Journal of Heredity. 57:55–57. 
  13. Dhall, RK. (2011). Advances in Research on Male Sterility. In: The Science of Horticulture. Peter, K.V. (eds.), New India Publishing Agency, New Delhi (India), pp. 113-143. 
  14. Dhatt, A.S. and Gill, S.S. (2000). Effect of genic male sterility on flowering behaviour of muskmelon. Vegetable Science. 27: 31-34. 
  15. Dickson, M.H. (1970). A temperature sensitive male sterile gene in broccoli. Brassica oleracea L. var. Italica. Journal of American Society for Horticultural Science. 95: 13-14. 
  16. Dickson, M.H. (1975). G1117A, G1102A and G1106A Cytosterile broccoli inbreds. Horticultural Science. 10: 535. 
  17. Duroc, Y., Gaillard, C., Hiard, S., Defrance, M.C., Pelletier, G., Budar, F. (2005). Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie. 87: 1089-1100.
  18. Dutta, O.P. (1971). Effect of gamma irradiation on germination plant growth, floral biology and fruit production in Abelmoschus esculentus. Third International Symposium on Tropical Horiculture, IIHR, Bangalore, India. pp. 141- 156 
  19. Erickson, E.H., Garment, M.B., and Peterson, C.E. (1982). Structure of cytoplasmic male sterile and fertile carrot flowers. Journal of American Society of Horticulture Science. 107: 698-706.
  20. Geng, S., Chen, B., Zhang, X. (2005). A new hot pepper F1 hybrid Jingla NO 2. China Vegetables. 10: 41-42.
  21. Georgiev, H. (1991). Heterosis in tomato breeding. In: Genetic Improvement of Tomato. [Kalloo G (ed)], Monographs on Theoretical Applied Genetics. 14, Springer-Verlag, Berlin, pp. 83-98. 
  22. Hanson, M.R., and Bentolila, S. (2004). Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 16: 154–169.
  23. Hazra, P. and Som, M.G. (1999). Technology for Vegetable Production and Improvement. Naya Prokash, Calcutta. pp 319-362. 
  24. Johnson, A.G. (1966). Inbreeding and production of commercial F1 hybrid seed in Brussels sprout. Euphytica. 15: 58-79. 
  25. Jones, H.A. and Emsweller, S.L. (1936). A male sterile onion. Proceedings of American Society for Horticultural Science. 34: 582-585.
  26. JonesH.A. and DavisG.(1944). Inbreeding and heterosis and their relation to the development of new varieties of onions. USDA Technical Bulletin 874. 
  27. Kakihara, F., Masahiro, K. and Tokumasu, S. (1988). Relationship between pollen degeneration and amino acids, especially proline, in male sterile Japanese radish (Raphanus sativus L. var. longipinnatus Bailey). Scientia Horticulturae. 36: 17-23. 
  28. Kalia, P. (2008). Exploring cytoplasmic male sterility for F1 hybrid development in Indian cauliflower. Cruciferae Newsletter. 27: 75-76. 
  29. Kalloo, G., Banerjee, M.K., Kumar, S. and Parkash, C. (1998). Hybrid vegetable technology in India- an overview. In: Souvenir, National Symposium on Emerging Scenario in Vegetable Research Development, PDVR, Varanasi, pp. 42-52. 
  30. Kaul, M.L.H. (1988). Male sterility in higher plants. Monographs on Theoretical Applied Genetics 10. Springer-Verlag, Berlin. 
  31. Kitagawa, J., Gerrath, J. and Wolyn, J.D. (1994). Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sexual Plant Reproduction. 7: 41-50. 
  32. Kumar, S. and Singh, P.K. (2004). Mechanisms for hybrid development in vegetables. Journal of New Seeds. 6: 300-407. 
  33. Kumar, S., Banerjee, M.K. and Kalloo, G. (2000). Male sterility: mechanisms and current status on identification, characterization and utilization in vegetables. Vegetable Science. 27: 1-24. 
  34. Kumar, S., Singh, V., Singh, M., Rai, S.K., Kumar, S., Rai, M. and Kalloo, G. (2007). Genetics and distribution of fertility restoration associated RAPD markers in pepper (Capsicum annuum L.). Horticultural Science. 111: 197 -202. 
  35. Lal, T., Vashisht, V. and Dhillon, N.P.S. (2007). Punjabamer Anmol – A new hybrid of muskmelon (Cucumis melo L.). Journal of Research Punjab Agricultual University. 44: 83. 
  36. Liu, W.Y. and Gniffke, P.A. (2004). Stability of AVRDC s cytoplasmic male sterile (CMS) pepper lines grown under low temperatures. Capsicum and Eggplant Newsletter. 23: 85-88. 
  37. Mariani C., De Beuckeleer M., Truettner J., Leemans J. and Goldberg R.B. (1990). Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature. 347: 737-741. 
  38. Mariani C., Gossele V., De Beuckeleer M., De Block M., Goldberg R.B, De Greef W. and Leemans J. (1992). A chimeric ribonuclease-    inhibitor gene restores fertility to male sterile plants. Nature. 357: 384-387. 
  39. McRae, D.H. (1985). Advances in chemical hybridization. Plant Breeding Reviews. 3: 169-191. 
  40. Meena O.P., Dhaliwal M.S. amd Jindal S.K. (2018). Development of cytoplasmic male sterile lines in chilli (Capsicum annuum L.). and their evaluation across multiple environments. Breeding science. 68:404-412.
  41. Michalik, B., and Slêczek, S. (1997). Evaluation of Daucus carota germplasm for tolerance to Erwinia carotovora. Journal of Applied Genetics. 38: 86-90.
  42. Moore, R.H. (1950). Several effects of maleic hydrazide on plants. Science. 112: 52-53. 
  43. Nandpuri, K.S., Singh, S. and Lal, T. (1982). Punjab Hybrid a variety of muskmelon. Progressive Farming. 18: 3-4. 
  44. Naylor, A.W. (1950). Observations on effects of maleic hydrazide on flowering of tobacco, maize and coclebut. Proceedings of the National Academy of Sciences. 36: 230-232. 
  45. North, C and Priestly, W.G. (1962). A glossy-leaved mutant of Brussels sprout. Horticultural Research. 1: 95-99. 
  46. Ogura, H. (1968). Studies on the new male-sterility in Japanese radish with special reference to the utilisation of this sterility towards the practical raising of hybrid seed. Memoirs of the Faculty of Agriculture Kagoshima University. 6: 39. 
  47. Parodi, P.C. and Gaju, M.D. (2009). Male sterility induction by the chemical hybridizing agent clofencet on wheat, Triticum aestivum and T. turgidum var. durum. Ciencia e investigacion Agraria. 36: 267-276.
  48. Patel, J.A., Shukla, M.R., Doshi, K.M., Patel, S.A., Patel, B.R., Patel, S.B. and Patel, A.O. (1998). Identification and development of male sterile in chilli (Capsicum annuum L). Vegetable Science. 25: 145-148. 
  49. Pathak, C.S. and Gowda, R.V. (1994). Breeding for the development of onion hybrids in India: problems and prospects. Acta Horticulturae. 358:239-242. 
  50. Pearson O.H. (1972). Cytoplasmically inherited male sterility characters and flavor components from the species cross Brassica nigra (L) Koch × B. oleracea L. Journal of the American Society for Horticultural Science. 97: 397–402
  51. Pelletier, G., Ferault, M., Lancelin, D., Boulidard, L., Dore, C., Bonhomme, S., Grelon, M. and Budar, F. (1995). Engineering of cytoplasmic male sterility in vegetables by protoplast fusion. Acta Horticulturae. 392: 11-17.
  52. Peterson, P.A. (1958). Cytoplasmically inherited male sterility in Capsicum. American Naturalist. 92: 111-119.
  53. Prayaga, P., Lakshamma, Anjani, K. (2002). Enhancement of male sterility in safflower by growth regulators and chemicals. Sesame and Safflower Newsletter. 16: 92-95
  54. Radkova M., Balacheva E., Atanassova B., Iantcheva A. and Atanassov A. (2009). Study on the potential of genic male sterility in tomato as a tool for pollen flow restriction, Biotechnology & Biotechnological Equipment. 23: 1303-1308.
  55. Razzaq M.K., Rauf S. and Akhtar N. (2015).Effect of various chemical hybridizing agents in sunflower (Helianthus annuus L.) for hybrid seed production. Seed Technology. 37: 23-31. 
  56. Santos C.A.F., Leite, D.L., Oliveira, V.R. and Rodrigues, M.A. (2010). Marker-assisted selection of maintainer lines within an onion tropical population. Scientia Agricola. (Piracicaba, Brazil), 67: 223-227.
  57. Sawhney, V.K. (1983). Temperature control of male sterility in a tomato mutant. Journal of Heredity. 74: 51-54. 
  58. Sawhney, V.K. (1997). Genic male sterility. In: Shivanna,K.R., Sawhney, V.K eds. Pollen Biotechnology for Crop Production and Improvement. Cambridge University press New York.183-98.
  59. Shen H. and Shi Z. (2005). A new hot pepper F1 hybrid ‘Nongda-082’. China Vegetables. 10: 43-44
  60. Singh, J. and Kaur, S. (1986). Present status of hot pepper breeding for multiple disease resistance in Punjab. Proceeding of VI EUCARPIA Meeting on Genetic and Breeding on Capsicum and Eggplant, Zaragoza (Spain). Pp.111-114.
  61. Sneep J and Hendriksen AJT. (Eds) (1979). Experimental Agriculture In: Plant Breeding Perspectives. Wageningen, the Netherlands: Centre Agricultural Publishing and Documentation (PUDOC) pp. 435.
  62. Sreedhar, R.V. (2003), Assessment of genetic variability in niger (Guizotia abyssinica Cass.) germplasm. M.Sc. (Agri.) Thesis, University of Agricultural Science, Dharwad.
  63. Szklarczyk M., Szymañski M., Wójcik-Jag³a, M., Simon P.W, Wejhe and Börner T. (2014). Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy, recombination involvement, post-    transcriptional processing as well as accumulation of RNA and protein product. Theoretical Applied Genetics. 127: 1689–1701.
  64. Thompson, D.J. (1961). Studies of the inheritance of male sterility in the carrot, Daucus carota var. sativa. Proceedings of the American Society of Horticultural Sciences. 78: 332-338. 
  65. Watts, V.M. (1967). Development of disease resistance and seed production in watermelon stocks carrying msg gene. Journal of the American Society for Horticultural Sciences. 91: 579-580. 
  66. Welch, J.E. and Grimball, E.L. (1947). Male sterility in the carrot. Science. 106: pp. 594. 
  67. Whitaker, T.W. and Davis, G.N. (1962). Cucurbits: Botany, Cultivation and Utilization. World Crop Books, Leonard Hill Ltd., London.

Global Footprints