Loading...

​Factors Affect to Stolon Formation and Tuberization in Potato: A Review

DOI: 10.18805/ag.R-187    | Article Id: R-187 | Page : 91-97
Citation :- ​Factors Affect to Stolon Formation and Tuberization in Potato: A Review.Agricultural Reviews.2022.(43):91-97
P.D. Abeytilakarathna abeytilaka@yahoo.com
Address : Department of Agriculture, Agricultural Research Station, Seetha Eliya, Nuwara Eliya, Sri Lanka.
Submitted Date : 28-12-2020
Accepted Date : 28-10-2021

Abstract

Potato tuber formation is a complex process that is induced by a mobile signal called tuberigen. It involves several genes such as AtBMI, St 14-3-3s, StBEL, StBELL11, StBELL29, StBMI1-1, StCDF1, StCEN, StCO, StFDL1, StFT, StGA2ox1, StGA3ox2, StMSI1, StSP6A. This article focuses on important factors such as genetic factors, low temperature, high irradiation, low nitrogen, abscisic acid, chlormequat chloride, auxin, Jasmonic acid, cytokinin and paclobutrazol that induce tuber formation while ethylene, drought, low irradiation, high-temperature that reduce or inhibit tuber initiation.

Keywords

Potato Stolon Tuber formation Tuberization

References

  1. Abdala, G., Castro, G., Miersch, O. and Pearce, D. (2002). Changes in jasmonate and gibberellins levels during development of potato plants (Solanum tuberosum L.). Plant Growth Regulation. 36: 121-126.
  2. Abelenda, J.A., Navarro, C. and Salome, P. (2011). From the model to the crop: Genes controlling tuber formation in potato. Current Opinion in Biotechnology. 22(2): 287-292.
  3. Adhikari, R.C. (2005). Performance of different size true potato seed seedling tubers at khumaltar. Nepal Agriculture Research Journal. 6: 28-34.
  4. Akoumianakis, K.A., Alexopoulos, A.A., Karapanos, I.C., Kalatzopoulos, K., Aivalakis, G. and Passam, H.C. (2016). Carbohydrate metabolism and tissue differentiation during potato tuber initiation, growth and dormancy induction. Australian Journal of Crop Science. 10(2): 185-192.
  5. Aksenova, N.P., Konstantinova, T.N., Lozhnikova, V.N., Golyanovkaya, S.A. and Sergeeva, L.I. (2009). Interaction between day length and phytohormones in the control of potato tuberization on the in vitro culture. Russian Journal of Plant Physiology. 56(4): 454-461.
  6. Aliche, E.B., Theeuwen, T.P.J.M., Oortwijn, M., Visser, R.G.F. and Linden, C.G.V.D. (2020). Carbon partitioning mechanisms in potato under drought stress. Plant Physiology and Biochemistry. 146: 211-219.
  7. Bahram, D., Saleh, A., Bahman, P. and Reza, M. (2020). Combining ability analysis of tuber yield and related traits in potato. Genetika. 20(1): 215-228.
  8. Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A. and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signalling pathway. Plant Cell. 18: 3443-3457.
  9. Bou-Torrent, J., Martinez-Garcia, J.F., Garcia-Martinez and Prat, S. (2011). Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS ONE. 6(9): e24458. 
  10. Celis-Gamboa, B.C. (2002). The life cycle of (Solanum tuberosum L.): From crop physiology to genetics. Ph.D. thesis. Laboratory of plant breeding, Wageningen University, Wageningen, The Netherlands.
  11. Cenzano, A., Vigliocco, A., Kraus, T. and Abdala, G. (2003). Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Botany. 91: 915-919.
  12. Chen, H., Rosin, F.M., Prat, S. and Hannapel, D.J. (2003). Interacting transcription factors from the tree-amino acid loop extension superclass regulate tuber formation. Plant Physiology. 132(3): 1391-1404. 
  13. Cheng, L., Wang, D., Wang, Y., Xue, H. and Zhang, F. (2019). An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro. Physiologia Plantarum. 168(3): 675-693.
  14. Cho, J.L. and Iritani, W.M. (1983). Comparison of growth and yield parameters of Russet Burbank for a two year period. American Potato Journal. 60: 569-575.
  15. Cristina, M., Morar, G., Duda, M. and Todoran, C. (2014). Potato tuberization in long photoperiodic conditions. Agricultura.  91-92(3-4): 24-31.
  16. Dahyabhai, N.D. (2004). Effect of cycocel on growth, yield and quality of potato (Solanum tuberosum L.) cv. Kufri Badshan in middle Gujarat agro-climatic conditions. M.Sc. Thesis. Department Horticulture, B.A. College of Agriculture, Gujarat Agricultural University, Anand Campus, Anand, India. 
  17. Dam, J.V., Kooman, P.L. and Struik, P.C. (1996). Effect of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research. 39: 51-62.
  18. De la Morena, I., Guillçn, A. and del Moral, L.F.G. (1994). Yield development in potatoes as influenced by cultivar and the timing and level of nitrogen fertilization. American Potato Journal. 71: 165-173.
  19. Degebasa, A.C. (2020). Treatment of gibberellic acid for vegetative growth, tuber yield and quality of potato (Solanum tuberosum L.) in the central highlands of Ethiopia. Global Journal of Agriculture Innovation, Research and Development. 7: 1-11.
  20. Demagante, A.L. and Zaag, P.V. (1988). The response of potato (Solanum spp.) to photoperiod and light intensity under high temperature. Potato Research. 31: 73-83.
  21. Dingenen, J.V., Hanzalova, K., Salem, M.A.A., Abel, C., Seibert, T., Giaralisco, P. and Wahl, V. (2019). Limited nitrogen availability has cultivar-dependant effect on potato tuber yield and tuber quality traits. Food Chemistry. 288: 170-177.
  22. Dyson, P.W. (1965). Effect of gibberellic acid and (2-chloroethyl)- trimethylammonium chloride on potato growth and development. Journal of the Science of Food and Agriculture. 16(9): 542-549.
  23. Ellis, G. D., Knowles, L.O. and Knowwwles, N.R. (2020). Increase the production efficiency of potato with plant growth retardants. American Journal of Potato Research. 97: 88-101.
  24. Errebhi, M., Rosen, C.J., Gupta, S.C. and Birong, D.E. (1998). Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal. 90(1): 10-15. 
  25. Gao, X., Yang, Q., Minami, C., Matsura, H., Kimura, A. and Yoshihara, T. (2003). Inhibitory effect of salicyl hydroxamic acid on theobromine-induced potato tuber formation. Plant Science. 165(5): 993-799.
  26. Gao, Y., Jia, L., Hu. B., Alva, A. and Fan, M. (2014). Potato stolon and tuber growth influenced by nitrogen form. Plant Production Science. 17(2): 138-143.
  27. Gonzalez-Sachain, N.D., Diaz-Mendoza, M., Zurczac, M. and Suarez-Lopez, P. (2012). Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. The Plant Journal. 70(4): 678-690.
  28. Hannapel, D.J., Sharma, P. and Banerjee, A.K. (2017). The multiple signals that control tuber formation. Plant Physiology. 174: 845-856.
  29. Hannapel, D.J. and Banerjee, A.K. (2017). Multiple mobile mRNA signals regulate tuber development in potatoes. Plants (Basel). 6: E8.
  30. Horton, D. (1987). Potatoes: Production, marketing and programs for developing countries. Westview Press, Inc., Frederick A. Praeger, Publisher, Colorado, USA. pp 1-3.
  31. Hulscher, M.T., Delleman, J., Eising, J. and Bueren, E.T.L.V. (2013). The inheritance of traits, Potato breeding. Aardappelwereld BV, The Hague, Netherlands, pp 40-63.
  32. Hunsigi, G. and Krishna, K.R. (1998). Science of Field Crop Production. Oxford and IBH Publishing Co Pvt. Ltd., New Delhi, India. pp 353-370.
  33. Jackson, S.D. (1999). Multiple signaling pathways control tuber induction in potato. Plant Physiology. 119(1): 1-8.
  34. Jackson, S.D. and Willmitzer, L. (1994). Jasmonic acid spraying does not induce tuberization in short-day requiring potato species kept in non-inducing conditions. Planta. 194: 155- 159.
  35. Jama-Rodzenska, A., Walczak, A., Adamczewska-Sowinska, K., Janik, G., Klosowicz, I., Glab, L., Sowinski, J., Chen, X. and Peczkowski, G. (2020). Influence of variation in volumetric moisture content of the substrate on irrigation efficiency in early potato varieites. PloS ONE. 15(4): e0231831. 
  36. Jefferies, R.A. and Lawson, H.M. (1991). A key for the stages of development of potato (Solatium tuberosum). Annals of Applied Biology. 119(2) : 387-399. 
  37. Kefi, S., Pavlista, A.D., Meagher, M.M. and Read, P.E. (2000). Invertase activity as affected by cytokinin-like compound during potato tuberization in vitro. American Journal of Potato Research. 77: 57-61.
  38. Kleinkopf, G.E., Westermann, D.T. and Dwelle, R.B. (1981). Dry matter production and nitrogen utilization by six potato cultivar. Agronomy Journal 73: 799-802.
  39. Kloosterman, B., Abelenda, J.A., del Mar Gomez, M.C., Oortwijn, M., de Boer, J.M., Kowitwanich, K., Horvath, B.M., van Eck, H.J., Smaczniak, C., Prat, S., Visser, R.G.F. and Bachem, C.W.B. (2013). Naturally occurring allele diversity allows potato cultivation in northern latitude. Nature. 495: 246-250.
  40. Kloosterman, B., Navarro, C., Bijsterbosh, G., Lange, T., Prat, S., Visser, R.G.F. and Bachem, C.W.B. (2007). StGA2ox1 is induced prior to stolon swelling and control GA levels during potato tuber development. The Plant Journal. 52: 362-373.
  41. Koch, M., Naurmann, M. and Pawelzik, E. (2020). The importance of nutrient management for potato production part I: Plant nutrition and yield. Potato Research. 63: 97-119.          
  42. Kolomitets, M.V., Hannapel, D.J., Chen, H., Tymeson, M. and Gladon, R.J. (2001). Lipoxygenase is involved in the control of potato tuber development. The Plant Cell. 13(3): 613-626. 
  43. Kratzke, M.G. and Palta, J.P. (1985). Evidence for the existence of functional roots on potato tubers and stolons: Significance in water transport to the tuber.  American Potato Journal. 62: 227-236.
  44. Kratzke, M.G. and Palta, J.P. (1992). Variations in stolons in length and in incidence of tuber roots among eight potato cultivars. American Potato Journal. 69: 561-570.
  45. Krauss, A. and Marschner, H. (1982). Influence of nitrogen nutrition, day length and temperature on contents of gibberellic and abscisic acid on tuberization in potato plants.  Potato Research. 25: 13-21.
  46. Krauss. A. (1981). Abscisic and gibberellic acid in growing potato tubers. Potato Research. 24: 435-439.
  47. Kumar, A., Kondhare, K.R., Vetal, P.V. and Banerjee, A.K. (2020). PcG proteins MS1 and BMI1 function upstream of miR156 to regulate aerial tuber formation in potato. Plant Physiology. 182(1): 185-203.
  48. Kumar, P., Alka, Rao, P. and Baijial, B.D. (1981). Effect of some growth regulators on plant growth, tuber initiation, yield and chemical composition of potato (Solanum tuberosum L.) Pakistan Journal of Botany. 13(1): 69-75.
  49. Lafta, A.M. and Lorenzen, J.H. (1995). Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology. 102(2): 637-643.
  50. Li, Q. and Zhang, S. (2020). Impacts of recent climate change on potato yield at a provincial scale in Northwest China. Agronomy. 10(3): 426. 
  51. Lin, T., Sharma, P., Gonzalez, D.H., Viola, I.L. and Hannapel, D.J. (2013). The impact of the long-distance transport of BEL1-like mRNA on development. Plant Physiology 161: 760-772.
  52. Lopez, R.F., del Castillo, S.F., Pérez,, R.J.E., Aguilar, M.R., León, C.M.T. and Saldaña, L.H. (2011). Paclobutrazol, uniconazole and cycocel in potato seed-tuber production in hydroponic culture. Serie Horticultura. 17(2): 173-182.
  53. Lynch, D.R., Foround, N., Kozub, G.C. and Fames, B.C. (1995). The effect of moisture stress at three growth stages on the yield, components of yield and processing quality of eight potato varieties. American Potato Journal. 72: 375- 385.
  54. Mackerron, D.K.L. and Harverkort, A.J. (2004). Decision support systems in potato production. Bringing Models to Practice. Wageningen Academic Publishers, Wageningen, The Netherlands. pp 218. 
  55. Martin, A., Adam, H., Díaz-Mendoza, M., Zurczak, M., González- Schain, N.D. and Suárez-López, P. (2009). Graft-transmissible induction of potato tuberization by micro RNA miR172. Development. 136: 2873-2881.
  56. Mauk, C.S. and Langille, A.R. (1978). Physiology of tuberization in Solanum tuberosum L.: cis-zeatin riboside in the potato plant: its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiology. 62: 438-442.
  57. Mawaha, R.S. and Sandhu, S.K. (2002). Yield, growth components and processing quality of potatoes as influenced by crop maturity under short and long days. Advances in Horticultural Science. 2: 79-87.
  58. Menzel, C.M. (1983). Tuberization in potato at high temperatures: gibberellins content and transport from buds. Annals of Botany. 52(5): 697-702.
  59. Menzel, C.M. (1985). Tuberization in potato at high temperatures: Interaction between temperature and irradiance. Annals of Botany. 55: 35-39.
  60. Mingo-Castel, A.M., Negm, F.B. and Smith, O.E. (1974). Effect of carbon dioxide and ethylene on tuberization of isolated potato stolons cultured in vitro. Plant Physiology. 53: 798- 801.
  61. Navarro, C., Abelenda, J.A., Cruz-Oró, E., Cuçllar, C.A., Tamaki, S., Silva, J., Shimamoto, K. and Prat, S. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 478: 119-122.
  62. Nurmanov, Y.T., Chernenok, Y.G. and Kuzdanova, R.S. (2019). Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crop Research. 231: 115-121.
  63. Olivera, C.A. and Da, S. (2000). Potato crop growth as affected by nitrogen and plant density. Pesquisa Agropecuária Brasileira. 35(5): 939-950.
  64. Palmer, C.E. and Smith, O.E. (1970). Effect of kinetin on tuber formation on isolated stolons of Solanum tuberosum L. cultured in vitro. Plant and Cell Physiology. 11(2): 303- 314.
  65. Paul, S., Farooq, M., Bhattacharya, S.S. and Gogoi, N. (2017). Management strategies for sustainable yield of potato crop under high temperature. Archives of Agronomy and Soil Science. 63(2): 276-287.
  66. Pelacho, A.M. and Mingo-Castel, A.M. (1991). Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiology. 97: 1253-1255.
  67. Plantenga, F.D.M., Siakou, M., Bergonzi, S., Heuvelink, E., Bachem, C.W.B., Visser, R.G.F. and Marcelis, L.F.M. (2016). Regulating flower and tuber formation in potato with light spectrum and day length. Acta Horticulturae. 1134: 267-276.
  68. Prange, R.K., McRae, K.B., Midmore, D.J. and Deng, R. (1990). Reduction in potato growth at high temperature: Role of photosynthesis and dark respiration. American Potato Journal. 67: 357-370. 
  69. Qiqige, S., Jia, L., Qin, Y., Chen, Y. and Mingshou, F. (2017). Effect of different nitrogen forms on potato growth and development. Journal of Plant Nutrition. 40(11): 1651-1659.
  70. Rex, B.L. (1992). Effect of two plant growth regulators on the yield and quality of Russet Burbank potatoes. Potato Research. 35: 227-233.
  71. Rodriguez-Falcon, M., Bou, J. and Prat, S. (2006). Seasonal control of tuberization in potato: conserved elements with the flowering response. Annual Review of Plant Biology. 57(1): 151-180.
  72. Roumeliotis, E., Kloosterman, B., Oortwijn, Kohlen, W., Bouwmeester, H.J., Visser, R.G.F. and Bachem, C.W.B. (2012a). The effect of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experiment Botany. 63(12):  4539-4548.
  73. Roumeliotis, E., Visser, R.G.F. and Bachem, C.W.B. (2012b). A crosstalk of auxin and GA during tuber development. Plant Signal and Behavior. 7(10): 1360-1363.
  74. Sarkar, D. and Nalik, P. (1998). Effect of inorganic nitrogen nutrition on cytokinin-induced potato microtuber production in vitro. Potato Research. 41: 211-217.
  75. Sattelmacher, B. and Marschner, H. (1979). Tuberization in potato plants as affected by application of nitrogen to the roots and leaves. Potato Research. 22: 49-57.
  76. Schapendonk, A.H.C.M., Spitters, C.J.T. and Groot, P.J. (1989). Effect of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Research. 32: 17-32.
  77. Sharma, P., Lin, T. and Hannapel, D. J. (2016). Target of StBELL5 transcription factor include the FT ortholog StSP6A. Plant Physiology. 170: 310-324.
  78. Smith, O.E. and Palmer, C.E. (1970). Cytokinin-induced tuber formation on stolons of Solanum tuberosum. Physiologia Plantarum. 23(3): 599-606. 
  79. Struik, P.C., Geertsema, J. and Custers, C.H.M. (1989). Effect of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. I. Development of the haulm. Potato Research. 32: 133-141.
  80. Struik, P.C., Kramer, G. and Smit, N.P. (1989). Effect of soil applications of gibberellic acid on the yield and quality of tubers of Solanum tuberosum L. cv. Brintje. Potato Research. 32: 203-209.
  81. Strunik, P.C., Vreugdenhil, D., VanEck, H.J., Bachem, C.W. and Visser, R.G.F. (1999). Physiological and genetic control of tuber formation. Potato Research. 42: 313-331. 
  82. Teo, C.J., Takahashi, K., Shimizu, K., Shimamoto, K. and Taoka, K. (2017). Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiology. 58(2): 365-374.
  83. Thornton, M., Pavek, M. and Bohl, W.H. (2007). Importance of tuber set and bulking rate. Proceedings of the Idaho Potato Conference, January 17, 2007. University of Idaho, Pocatello, Idaho, USA.
  84. Tripura, A., Das, A., Das, B., Priya, B. and Sarkar, K.K. (2016). Genetic studies of variability, character association and path analysis of yield and its component traits in potato (Solanum tuberosum L.). Journal of Crop Science and Weed. 12(1): 56-63.
  85. Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C. and Oparka, K.J. (2001). Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. The Plant Cell. 12: 385-398. 
  86. Vreugdenhil, D. and Dijk, W.V. (1989). Effect of ethylene on the tuberization of potato (Solanum tuberosum) cutting. Plant Growth Regulation. 8: 31-39.
  87. Walworth, J.L. and Carling, D.E. (2002). Tuber initiation and development in irrigated and non-irrigated potatoes. American Journal of Potato Research. 79: 387-395.
  88. Wang, C.C., Wang, X.Y., Wang, K.X., Hu, J.J., Tang, M.X., He, W. and Zaag, P.V. (2018). Manipulating aeroponically grown potatoes with gibberellins and calcium nitrate. American Journal of Potato Research. 95: 351-361.
  89. Wang, D., Cheng, L., Wang, Y. and Zhang, F. (2018). Comparative proteomic analysis of potato (Solanum tuberosum L.) tuberization in vitro regulated by IAA. American Journal of Potato Research. 95: 395-412.
  90. Wang, Y.M., Chai, Q. and Zhang, H.J. (2013). Effect of water deficit at tuber initiation on potato (Solanum tuberosum) tuber yield and efficiency of water use. In: Advance Material Research. [H. Li, Q. Xu and H. Ge (Eds.)], 864-867: 2061-2064.
  91. Wasilewska-Nascimento, B., Boguszewska-Mañkowska, D. and Zarzyñska, K. (2020). Challenges in the production of high-quality seed potatoes (Solanum tuberosum L.) in the tropics and subtropics. Agronomy. 10: 260-275.
  92. Wheeler, R.M., Steffen, K.L., Tibbitts, T.W. and Palta, J.P. (1986). Utilization of potatoes for life support system II. The effects of temperature under 24-H and 12-H photoperiods. American Potato Journal. 63: 639-647.
  93. Wijaya, H., Slameto and Hariyona, H. (2017). Effect of cycocel concentration on result of mini potato tubers (Solanum tuberosum L.) in hydroponic substrate. International Journal of Science, Engineering and Information Technology. 2(1): 41-44.
  94. Wurr, D.C.E., Hole. C.C., Fellows, J.R., Milling, J., Lynn, J.R. and O’Brien, P.J. (1997). The effect of some environmental factors on potato tuber numbers. Potato Research. 40(3): 297- 306.
  95. Xu, X., van Lammeren, Vermeer, E. and Vreugdenhil, D. (1998). The role of gibberellins, abscisic acid and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology. 177: 575-584.
  96. Xu, X., Vreugdenhil, D. and van Lammeren, A.A.M. (1998). Cell division and cell enlargement during potato tuber formation. Journal of Experimental Botany. 49(320): 573-582.
  97. Zhang, G., Tang, R., Niu, S., Si, H., Yang, Q., Bizimungu, B., Regan, S. and Li, X.Q. (2020). Effect of earliness on heat stress tolerance in fifty potato cultivars. American Journal of Potato Research. 97: 23-32. 
  98. Zhang, X., Campbell, R., Ducreux, L.J.M., Morris, J., Hedley, P.E., Mellado-Ortega, E., Roberts, A.G., Stephens, J., Bryan, G.J., Torrance, L., Chapman, S.N., Prat, S. and Taylor, M.A. (2020). TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. Plant Journal. 103(6): 2263-2278.

Global Footprints