Loading...

Crop Monitoring using Unmanned Aerial Vehicles: A Review

DOI: 10.18805/ag.R-180    | Article Id: R-180 | Page : 121-132
Citation :- Crop Monitoring using Unmanned Aerial Vehicles: A Review.Agricultural Reviews.2021.(42):121-132
Jose Cuaran, Jose Leon jrcuaran@ucatolica.edu.co
Address : Department of Electronics Engineering, Universidad Catolica de Colombia, Diagonal 46 A # 15 B - 10, Bogotá D.C.
Submitted Date : 11-11-2020
Accepted Date : 3-02-2021

Abstract

Unmanned aerial vehicles (UAVs) or drones have been developed significantly over the past two decades, for a wide variety of applications such as surveillance, geographic studies, fire monitoring, security, military applications, search and rescue, agriculture, etc. In agriculture, for example, remote sensing by means of unmanned aerial vehicles has proven to be the most efficient way to monitor crops from images. Unlike remote sensing from satellite images or taken from manned aircraft, UAVs allow capturing images of high spatial and temporal resolution, thanks to their maneuverability and capability of flying at low altitude. This article presents an extensive review of the literature on crop monitoring by UAV, identifying specific applications, types of vehicles, sensors, image processing techniques, among others. A total of 50 articles related to crop monitoring applications of UAV in agriculture were reviewed.  Only journal articles indexed in the Scopus database with more than 50 citations were considered. It was found that cereals are the most common crops where remote sensing has been applied so far. In addition, the most common crop remote sensing applications are related to precision agriculture, which includes the management of weeds, pests, diseases, nutrients and others. Crop phenotyping is also a common application of remote sensing, which consists of the evaluation of a crop’s physical characteristics under environmental changes, to select the plants or seeds with favorable genotype and phenotype. Besides, multirotor is the most common type of UAV used for remote sensing and RGB and multispectral cameras are mostly used as sensors for this application. Finally, there is a great opportunity for research in remote sensing related to a wide variety of crops, crop monitoring applications, vegetation indexes and photogrammetry.

Keywords

Crop monitoring Phenotyping Precision agriculture Remote sensing UAV Vegetation indices

References

  1. Aasen, H., Burkart, A., Bolten, A. and Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing. 108: 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002.
  2. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J. (2017). Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing. 9(11): 1110.https://doi.org/10.3390/rs9111110
  3. Barrientos, A., Colorado, J., Cerro, J., Martínez-Álvarez, A., Rossi, C., Sanz, D., and Valente, J. (2011). Aerial Remote Sensing in Agriculture: A Practical Approach to Area Coverage and Path Planning for Fleets of Mini Aerial Robots. Journal of Field Robotics. 28: 667-689.https://doi.org/10.1002/rob.20403.
  4. Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S. and Bareth, G. (2014). Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sensing. 6(11): 10395-10412.https://doi.org/10.3390/rs61110395.
  5. Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., et al. (2015). Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation. 39: 79-87. https://doi.org/10.1016/j.jag.2015.02.012.
  6. Berni, J.A.J., Zarco-Tejada, P.J., Sepulcre-Cantó, G., Fereres, E. and Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment. 113(11): 2380-2388. https://doi.org/10.1016/j.rse.2009.06.018.
  7. Berni, J.A.J., Zarco-Tejada, P.J., Suarez, L. and Fereres, E. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing. 47(3): 722-738. https://doi.org/10.1109/TGRS.2008.2010457.
  8. Chapman, S.C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M.F., Jimenez-Berni, J. (2014). Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy. 4(2): 279-301.https://doi.org/10.3390/agronomy4020279.
  9. Córcoles, J.I., Ortega, J.F., Hernández, D., and Moreno, M.A. (2013). Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems Engineering, 115(1): 31-42.https://doi.org/10.1016/j.biosystemseng. 2013.02.002.
  10. Díaz-Varela, R., de la Rosa, R., León, L. and Zarco-Tejada, P. (2015). High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sensing. 7(4): 4213-4232. https://doi.org/10.3390/rs70404213.
  11. Faiçal, B.S., Costa, F.G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Braun, T. (2014). The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. Journal of Systems Architecture, 60(4): 393-404.https://doi.org/10.1016/j.sysarc.2014.01.004.
  12. Gao, P., Zhang, Y., Zhang, L., Noguchi, R. and Ahamed, T. (2019). Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach. Sensors. 19(2): 313. https://doi.org/10.3390/s19020313.
  13. Garcia, I. (2017). Estudio sobre vehículos aéreos no tripulados y sus aplicaciones. Universidad de Valladolid. Escuela de Ingenierías industriales. P.196.
  14. Garcia-Ruiz, F., Sankaran, S., Maja, J.M., Lee, W.S., Rasmussen, J. and Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. 91: 106-115.https://doi.org/10.1016/j.compag. 2012.12.002.
  15. Gebbers, R. and Adamchuk, V.I. (2010). Precision Agriculture and Food Security. Science. 327(5967): 828-831.https://doi.org/10.1126/science.1183899.
  16. Geipel, J., Link, J. and Claupein, W. (2014). Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sensing. 6(11). 10335-10355. https://doi.org/10.3390/rs61110335.
  17. Gogoi, N.K., Deka, B. and Bora, L.C. (2018). Remote sensing and its use in detection and monitoring plant diseases: A review. Agricultural Reviews. 39(4): 307-313. https://doi.org/10.18805/ag.R-1835.
  18. Gómez-Candón, D., De Castro, A.I. and López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture. 15(1): 44-56. https://doi.org/10.1007/s11119-013-9335-4.
  19. Gonzalez-de-Soto, M., Emmi, L., Perez-Ruiz, M., Aguera, J. and Gonzalez-de-Santos, P. (2016). Autonomous systems for precise spraying – Evaluation of a robotised patch sprayer. Biosystems Engineering. 146: 165-182. https://doi.org/10.1016/j.biosystemseng.2015.12.018.
  20. Haghighattalab, A., González Pérez, L., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., Poland, J. (2016). Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods. 12(1): 35. https://doi.org/10.1186/s13007-016-0134-6.
  21. Henrich, V., Jung, A., Götze, C., Sandow, C., Thürkow, D. and Gläßer, C. (2009, marzo 16). Development of an online indices database: Motivation, concept and implementation. Presentado en 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative Tool for Scientific and Commercial Environment Applications Tel Aviv, Israel. Recuperado de https://www.indexdatabase.de/.
  22. Holman, F., Riche, A., Michalski, A., Castle, M., Wooster, M. and Hawkesford, M. (2016). High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sensing. 8(12): 1031. https://doi.org/10.3390/rs8121031.
  23. Hunt, E.R., Hively, W.D., Fujikawa, S., Linden, D., Daughtry, C.S. and McCarty, G. (2010). Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sensing. 2(1): 290-305.https://doi.org/10.3390/rs2010290.
  24. Jin, X., Liu, S., Baret, F., Hemerlé, M. and Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment. 198: 105-114. https://doi.org/10.1016/j.rse.2017.06.007.
  25. Kumar, S.K. Singh, G.P. Obi Reddy, V.N. Mishra, R.K. Bajpai. (2020). Remote Sensing and Geographic Information System in Water Erosion Assessment. Agricultural Reviews. 41: 116-123. DOI: 10.18805/ag.R-1968.
  26. Leiva, F. (2008). Agricultura de precisión en cultivos transitorios. Bogotá, D.C.: Universidad Nacional de Colombia.
  27. Lelong, C., Burger, P., Jubelin, G., Roux, B., Labbé, S., and Baret, F. (2008). Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors. 8(5): 3557-3585. https://doi.org/10.3390/s8053557.
  28. Li, W., Niu, Z., Chen, H., Li, D., Wu, M. and Zhao, W. (2016). Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecological Indicators. 67: 637-648. https://doi.org/10.1016/j.ecolind.2016.03.036
  29. Liebisch, F., Kirchgessner, N., Schneider, D., Walter, A. and Hund, A. (2015). Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods. 11(1): 9. https://doi.org/10.1186/s13007-015-0048-8.
  30. López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches: Weed detection for site-specific weed management. Weed Research. 51(1): 1-11. https://doi.org/10.1111/j.1365-3180.2010. 00829.x.
  31. Lucieer, A., Malenovský, Z., Veness, T. and Wallace, L. (2014). HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System: HyperUAS-Imaging Spectroscopy from a Multirotor Unmanned. Journal of Field Robotics. 31(4): 571-590. https://doi.org/10.1002/rob.21508.
  32. Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Gioli, B. (2015). Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing. 7(3): 2971-2990. https://doi.org/10.3390/rs70302971.
  33. Munoz-Marí, J., Bovolo, F., Gómez-Chova, L., Bruzzone, L. and Camp-Valls, G. (2010). Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing. 48(8): 3188-3197. https://doi.org/10.1109/TGRS.2010. 2045764.
  34. Peña-Barragán, J.M., Torres-Sánchez, J., De Castro, A., Kelly, M. and López-Granados, F. (2013). Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PloS one. 8: e77151. https://doi.org/10.1371/journal.pone.0077151.
  35. Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-Martínez, C. and López-Granados, F. (2016). Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Systems with Applications. 47: 85-94. https://doi.org/10.1016/j.eswa.2015.10.043.
  36. Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R.N. and Christensen, S. (2016). Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy. 74: 75-92.https://doi.org/10.1016/j.eja.2015.11.026.
  37. Schmale III, D.G., Dingus, B.R. and Reinholtz, C. (2008). Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. Journal of Field Robotics. 25(3): 133-147. https://doi.org/10.1002/rob.20232.
  38. Shi, Y., Thomasson, J.A., Murray, S.C., Pugh, N.A., Rooney, W.L., Shafian, S., et al. (2016). Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLOS ONE. 11(7): e0159781.https://doi.org/10.1371/journal.pone.0159781.
  39. Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M.L. and Zarco-Tejada, P.J. (2012). Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS Journal of Photogrammetry and Remote Sensing. 71: 47-61. https://doi.org/10.1016/j.isprsjprs.2012.05.003.
  40. Sugiura, R., Noguchi, N. and Ishii, K. (2005). Remote-sensing Technology for Vegetation Monitoring using an Unmanned Helicopter. Biosystems Engineering. 90(4): 369-379. https://doi.org/10.1016/j.biosystemseng.2004.12.011.
  41. Suomalainen, J. anders, N., Iqbal, S., Roerink, G., Franke, J., Wenting, P., Kooistra, L. (2014). A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles. Remote Sensing. 6(11): 11013-11030.https://doi.org/10.3390/rs61111013.
  42. Swain, K.C., Thomson, S.J., and Jayasuriya, H.P.W. (2010). Adoption of an Unmanned Helicopter for Low-Altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop. Transactions of the ASABE. Recuperado de http://agris.fao.org/agris-search/search.do?recordID=US 201301826860.
  43. Tattaris, M., Reynolds, M.P. and Chapman, S.C. (2016a). A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Frontiers in Plant Science. 7. https://doi.org/10.3389/fpls.2016.01131.
  44. Tattaris, M., Reynolds, M.P. and Chapman, S.C. (2016b). A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Frontiers in Plant Science. 7. https://doi.org/10.3389/fpls.2016.01131.
  45. Tokekar, P., Vander Hook, J., Mulla, D. and Isler, V. (2013). Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 5321-5326. https://doi. org/10.1109/IROS.2013.6697126.
  46. Tom, D., Simon, P., Simon, B. and Bruce, G. (2018). Agricultural robotics: The Future of Robotic Agriculture. UKRAS Network Robotics and Autonomous systems.
  47. Torres-Sánchez, J., López-Granados, F. and Peña, J.M. (2015). An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture. 114: 43-52. https://doi.org/10.1016/j.compag.2015.03. 019.
  48. Torres-Sánchez, J., Peña, J.M., de Castro, A.I. and López-Granados, F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture. 103: 104-113.https://doi.org/10.1016/j.compag.2014.02.009.
  49. Torres-Sánchez, Jorge, López-Granados, F., De Castro, A.I. and Peña-Barragán, J.M. (2013). Configuration and Specifica- tions of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE. 8(3): e58210.https://doi.org/10.1371/journal.pone.0058210.
  50. Torres-Sánchez, Jorge, López-Granados, F., Serrano, N., Arquero, O. and Peña, J. M. (2015). High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLOS ONE. 10(6): e0130479.https://doi.org/10.1371/journal.pone.0130479.
  51. Vega, F.A., Ramírez, F.C., Saiz, M.P., and Rosúa, F.O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering. 132: 19-27. https://doi.org/10.1016/j.biosystemseng.2015. 01.008.
  52. Verger, A., Vigneau, N., Chéron, C., Gilliot, J.-M., Comar, A. and Baret, F. (2014). Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sensing of Environment.152. 654-664.https://doi.org/10.1016/j.rse.2014.06.006.
  53. von Bueren, S.K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M.P., and Yule, I.J. (2015). Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences. 12(1): 163-175. https://doi.org/10.5194/bg-12-163-2015.
  54. Xiang, H., and Tian, L.F. (2011). Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosystems Engineering - BIOSYST ENG. 108: 104-113. https://doi.org/10.1016/j.biosystemseng.2010.11.003.
  55. Y. Huang, W.C. Hoffmann, Y. Lan, W. Wu and B.K. Fritz. (2009). Development of a Spray System for an Unmanned Aerial Vehicle Platform. Applied Engineering in Agriculture. 25(6): 803-809. https://doi.org/10.13031/2013.29229.
  56. Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L., and Ellis, E.C. (2015). Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation. 186: 287-295. https://doi.org/10.1016/j.biocon.2015.03.031.
  57. Zarco-Tejada, P.J., González-Dugo, V., Williams, L.E., Suárez, L., Berni, J.A.J., Goldhamer, D. and Fereres, E. (2013). A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sensing of Environment. 138: 38-50. https://doi.org/10.1016/j.rse.2013.07.024.
     

Global Footprints