Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 39 issue 2 (june 2018) : 163-168

Chitosan: An elicitor and antimicrobial Bio-resource in plant protection

Akansha Singh, Kalpana Gairola, Vinod Upadhyay, J. Kumar
1Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar-263 145,  Uttarakhand, India.
Cite article:- Singh Akansha, Gairola Kalpana, Upadhyay Vinod, Kumar J. (2018). Chitosan: An elicitor and antimicrobial Bio-resource in plant protection. Agricultural Reviews. 39(2): 163-168. doi: 10.18805/ag.R-1723.
Pesticide resistance and environment threat due to injudicious use of chemical pesticides for disease management employs the alteration in management practices. Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance, and prime the plants for systemic acquired resistance in addition to this Chitosan has high antimicrobial activity against a wide  range of pathogenic and spoilage microorganisms, including fungi and bacteria. The use of chitosan in agriculture and in food systems should be based on sufficient knowledge of the complex mechanisms of its elicitor and antimicrobial mode of action. In this article we a number of studies on the investigation of chitosan antimicrobial and resistance inducing properties and application of them in agriculture sector have been summarized.
  1. Arcidiacono, S. and Kaplan D.L. (1992). Molecular weight distribution of chitosan isolated from    Mucor rouxii under different culture and processing conditions. Biotechnology and Bioengineering, 39: 281–286.
  2. Atia , M.M.M., Buchenauer, H., Aly, A.Z. and Abou-Zaid, M.I. (2005). Antifungal Activity of Chitosan AgainstPhytophthorainfestans and Activation of Defence Mechanisms in Tomato to Late Blight. Biological Agriculture and Horticulture, 23: 175-197.
  3. Awadalla O.A. and Mahmoud Y.A.G. (2005). New chitosan derivatives induced resistance to Fusarium wilt disease through phytoalexin (Gossypol) production. Sains Malaysiana, 34: 141-146.
  4. Badawy M.E.I. and Rabea E.I. (2013). Synthesis and structure-activity relationship of N(cinnamyl) chitosan analogs as antimicrobial agents. International Journal of Biological Macromolecule. 57:185-92.
  5. Badawy M.E.I., Rabea E.I. and Taktak N.E.M. (2014). Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-    (benzyl) chitosan derivatives on plant    pathogens. Carbohydrate Polymers, 111: 670-682.
  6. Badawy M.E.I., Rabea E.I., Taktak N.E.M. and Nouby M.A.M.E. (2016). The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against    Plant Pathogenic Bacteria. Scientifica 2016: 1-10.
  7. Chatterjee, S., Adhya, M., Guha, A.K., and Chatterjee, B.(2005). Chitosan from Mucor rouxii: Production and physico-chemical characterization. Boichemistry 40: 395-400
  8. Chatterjee, S., Chatterjee, S., Chatterjee, B., Chatterjee, P. and Guha K. (2009). Influence of plant growth hormones on the growth of Mucor rouxii and chitosan production. Microbiological Research, 64: 347-351.
  9. Chung, Y.C. and Chen, C.Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 3: 2806–2814.
  10. Eilenberg, H., Pnini-Cohen, S., Rahamim, Y., Sionov, E., Segal, E., Carmeli, S. and Zilberstein,A. (2010). Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany, 61: 911–922.
  11. Feng, Y. and Xia W. (2011). Preparation, characterization and antibacterial activity of water soluble O-fumaryl-chitosan. Carbohydrate Polymers, 83:1169-1173.
  12. Garcia-Rincóna, J., Vega-Pérezb, J., Guerra-Sánchezb, M.G., Hernandez Lauzardoa, A.N., Pena-DíazcA. and Velazquez-Del Vallea, M.G. (2010). Effect of chitosan on growth and    plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pesticide    Biochemistry and Physiology 97: 275–278.
  13. Goy, R.C., Britto, D. and Assis, O.B.G. (2009). A review of the antimicrobial activity of    chitosan. Polimeros, 19: 241–247.
  14. Guilli, M.E., Hamza, A., Clément C., Ibriz, M., and Barka E.A. (2016). Effectiveness of Postharvest Treatment with Chitosan to Control Citrus Green Mold. Agriculture. 6: 2-    12.
  15. Hadwiger, L.A. (2013). Multiple effects of chitosan on plant systems: solid science or hype. Plant Sciences, 208: 42–49.
  16. Hafdani, F.N. and Sadeghinia, N. (2011). A review on application of chitosan as a natural antimicrobial. International scholarly and Scientific Research and Innovation, 5: 46-50.
  17. He, G., Chen, X., Yin, Y., Zheng,, H., Xiong, X. and Du, Y. (2011). Synthesis,    characterization and antibacterial activity of salicyloyl chitosan. Carbohydrate Polymers, 83:1274-1278.
  18. Helander, I.M., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J. and Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria.    International Journal of Food Microbiology, 71: 235–244.
  19. Hsu, S.H., Chang, Y.B., Tsai, C.L., Fu, K.Y., Wang, S.H. and Tseng, H.J. (2011). Characterization and biocompatibility of chitosan nanocomposites. Colloid Surface, 85: 198–206.
  20. Hu, Y., Du, Y., Yang, J., Kennedy, J. F. Wang, X. and Wang, L. (2007). Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers, 67: 66-72.
  21. Ing, L.Y., Zin, N.M., Sarwar, A. and Katas, H. (2012). Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties. International Journal of Biomaterials, 2012: 1-9.
  22. Iriti M., Vitalini S., Di Tommaso G., D’Amico S., Borgo M and Faoro F. (2011). New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Australian Journal of Grape Wine Research, 17: 263–269. 
  23. Issam, S.T., Adele, M.G., Adele, C.P., Stephane, G. and Veronique, C. (2005). Chitosan    polymer as bioactive coating and film against Aspergillus niger contamination. Journal of Food Science, 70: 100–104.
  24. Je, J.Y. and Kim, S.K. (2006). Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and Food Chemistry, 54: 6629–6633.
  25. Jia, X., Meng, Q., Zeng, H., Wang, W and Yin, H. (2016). Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.Scientific Report, 6: 1-12.
  26. Kareem, A.E.F. and Haggag, W.M. (2014). Chitosan and citral alone or in combination for controlling early blight disease of potato plants under field conditions. Research journal    of Pharmaceutical, Biological, Chemical. Science, 5: 941-949.
  27. Katiyar, D., Hemantaranjan, A. and Singh B. (2016). Antifungal Activity of Chitosan and Chitooligosaccharides against Red Rot of Sugarcane. Journal of Mycology and Plant pathology, 46: 224 – 228.
  28. Kurita K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8: 203-226.
  29. Li, X., Shi, X. Wang, M. and Du, Y. (2011). Xylan chitosan conjugate –A potential food    preservative. Food Chemistry, 126: 520- 525.
  30. Liu, H., Du, Y., Wang, X. and Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95: 147-55.
  31. Liu, H., Tian W., Li, B.,Wu, G., Ibrahim, M., Tao, Z., Wang, Y., Xie G., Li, H. and Sun, G. (2012).    Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 34: 2291–2298.
  32. Liu, X.F., Guan, Y.L., Yang, D. Z., Li Z. and Yao, K. D. (2000). Antibacterial action of chitosan    and carboxymethylated chitosan. Journal of Applied Polymer Science, 79:1324-1335. 
  33. Mansilla, A.Y., Albertengo, L., Rodríguez, M.S., Debbaudt, A., Zúñiga, A., and Casalongue C.A. (2013). Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000.    Applied Microbiology Biotechnology, 15: 6957-6966.
  34. Raafat D. and Sahl H.G. (2009). Chitosan and its antimicrobial potential – a critical literature survey. Microbial Biotechnology, 2: 186-201.
  35. Rabea, E.I., Badawy, M.E.I., Steurbaut, W. and Stevens C.V. (2009). In vitro assessment of N (benzyl) chitosan derivatives against some plant pathogenic bacteria and fungi. European Polymer Journal, 45: 237–245.
  36. Ravichandran G., Venkatasalam E.P. and Manorama K. (2015). Role of bioactive polymer coating    on potato microtuber storage and field performance. Indian Journal of Horticulture, 72: 107-113.
  37. Romanazzi, G. (2010). Chitosan treatment for the control of postharvest decay of table grapes, strawberries and sweet cherries. Fresh Produce, 4: 111-115.
  38. Runarsson, O.V., Holappa, J., Nevalainen, T., Hjalmarsdottir, M., Järvinen, T., Loftsson, T., Einarsson, J. M., Jonsdottir, S., Valdimarsdottir, M. and Masson, M. (2007). Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships. European Polymer Journal, 43: 2660-2671. 
  39. Sajeesh P.K. (2015). Cu-Chi-Tri: A triple combination for the management of late blight disease of potato (Solanum tuberosum L.). PhD Thesis GBPUA&T, Pantnagar, (India).
  40. Sajeesh P.K. Bhardwaj, N.R. Balodi, R. and Kumar J. (2016). Field evaluation of triplecombination of copper, chitosan and Trichoderma for management of late blight disease of potato under hill condition. Advances in Life Sciences, 5: 2771-2778.
  41. Silva, T.H., Alves, A., Ferreira, B.M., Oliveira, J.M., Reys, L.L., Ferreira, R.J.F., Sousa, RA., Silva, S. S., Mano, J.F. and Reis, R.L. (2012). Materials of marine origin: a review on    polymers and ceramics of biomedical interest. International Materials Reviews, 57:276-306.
  42. Sood N. and Sohal B.S. (2012). Studies in relation to chitosan and its potential to enhance host resistance in Brassica juncea L. against Alternaria blight. Plant Disease Research, 144-148.
  43. Tang, H., Zhang, P., Kieft, T. L., Ryan, S. J., Baker, S. M., Wiesmann, W. P. and Rogelj, S.(2010). Antibacterial action of a novel functionalized chitosan-arginine against Gram negative bacteria. Acta Biomaterialia, 6: 2562-2571.
  44. Vallapa, N., Wiarachai, O., Thongchul, N., Pan, J., Tangpasuthadol, V., Kiatkamjornwong, S. and Hoven, V. P. (2011). Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydrate Polymers, 83: 868-875.
  45. Xing, K., Zhu, X., Peng, X and Qin, S. (2015). Chitosan antimicrobial and eliciting properties for    pest control in agriculture: a review. Agronomy for Sustainable Development, 35: 569-588.
  46. Yang, T. C. Chou, C. C. and Li C. F. (2005). Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International Journal of Food Microbiology, 97: 237– 245. 

Editorial Board

View all (0)