Agricultural Reviews
Publish
your articles with us

Quick Facts



Payment Options

payment portals

Click here to pay directly

Vegetable Grafting: A Surgical Approach to combat biotic and abiotic stresses- A review

Sanjeev Kumar, Nikki Bharti and S.N. Saravaiya
Department of Vegetable Science, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari-396 450, Gujarat, India.
drsksony@nau.in

Page Range:
1-11
Article ID:
R-1711
Online Published:
28-02-2018
Abstract
Vegetables are nutritionally rich, high-valued crops and remunerative enough to replace subsistence farming. However, vegetables are highly sensitive to climatic vagaries and sudden irregularities in weather factors at any phase of crop growth can affect the normal growth, flowering, fruit development and subsequently the yield. Grafting in vegetable has emerged as a promising surgical alternative over relatively slow conventional breeding methods aimed at increasing tolerance to biotic and abiotic stresses. It provides an opportunity to transfer some genetic variations of specific traits of rootstocks to influence the phenotype of scion. Thus, genetic potential of various rootstocks in vegetable crops has proven to be a better alternative to chemical sterilants against many soil-borne diseases. The higher physiological activities like antioxidant content, lipoxygenase activity, osmotic adjustment, membrane selectivity, development of adventitious root and aerenchymatous tissue in plants grafted onto potential rootstocks provide broad insight into stress response mechanisms and thus, grafting is proposed to mitigate the adverse impact of climate change on productivity and quality of vegetables crops.
Keywords
Climate change, Genetics, Grafting, Physiological mechanism, Surgical approach, Vegetables.
References
  1. Abdelmageed, A.H.A., Gruda, N. and Geyer, B. (2004). Effects of temperature and grafting on the growth and development of tomato plants under controlled conditions. In: DeutsherTropentag, Rural Poverty Reduction through Research for Development and Transformation; October 5-7. 2004, pp. 1-5.
  2. Afroza, B., Wani, K.P., Khan, S.H., Jabeen, N.,Hussain, K., Mufti, S. and Amit, A. (2010). Various technological interventions to meet vegetable production challenges in view of climate change. Asian Journal Horticulture,5(2): 523-529.
  3. Agele, S. and Cohen, S. (2009). Effect of genotype and graft type on hydraulic characteristics and water relations of grafted melon. Journal of PlantInteractions,4(1): 59-66.
  4. Ahmad, P. and Prasad, M.N.V. (2012). Abiotic Stress Responses in Plants. Springer New York Dordrecht Heidelberg London. 465 p.
  5. Albacete, A., Martinez-Andujar, C., Perez, A.M., Thompson, A.J., Dodd, I.C.and Alfocea, F.P. (2015). Unravelling rootstock x scion interactions to improve food security. Journal of Experimental Botany, 1-16.doi:10.1093/jxb/erv027.
  6. Ali, M., Matsuzoe, N., Okubo, H. and Fujieda, K. (1992). Resistance of Non-tuberous Solanum to Root-knot Nematode. Journal of Japan Society of Horticultural Science, 60(4): 921-926. 
  7. Aloni, B., Cohen, R.,Karni, L.,Aktas, H. and Edelstein, M. (2010). Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae,127: 119-126.
  8. Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50: 601-639. 
  9. Bagnaresi, P., Sala, T., Irdani, T., Scotto, C., Lamontarana, A., Beretta, M., Rotino, G.L., Sestili and L., Sabatini, E. (2013). Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics, 14: 540.
  10. Bahadur, A., Rai, N., Kumar, R., Tiwari, S.K., Singh, A.K.,Rai, A.K., Singh, U., Patel, P.K., Tiwari, V. and Singh, B. (2015). Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Vegetable Science, 42 (2): 82-87. 
  11. Balass, M., Cohen, Y. and Bar-Joseph, M. (1992). Identification of a constitutive 45 kDa soluble protein associated with resistance to downy mildew in muskmelon (Cucumis melo L.) line PI 124111 F. Physiological and Molecular Plant Pathology, 41: 387-396.
  12. Balint-Kurti, P.J., Dixon, M.S., Jones, D.A., Norcott, K.A. and Jones, J.D.G. (1994). RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theoretical and Applied Genetics, 88: 691-700.
  13. Bhatt, R.M., Laxman, R.H., Singh, T.H.. Divya, M.H., Srilakshmi and Nageswar Rao, A.D.D.V.S. (2014). Response of brinjal genotypes to drought and flooding stress. Vegetable Science, 41(2): 116-124.
  14. Bletsos, F., Thanassoulopoulos, C. and Roupakias, D. (2003). Effect of grafting on growth, yield, and Verticillium wilt of eggplant. Horticulture Science, 38: 183-186.
  15. Bletsos, F.A. (2006). Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. ScientiaHorticulturae, 107: 325-331.
  16. Boiteux L.S. and Charchar J.M. (1996). Genetic resistance to rootknot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breeding, 115: 198-200.
  17. Bolger, A., Scossa, F., Bolger, M.E., Lanz, C., Maumus, F., Tohge, T. Quesneville, H. and Alseekh, S., et al.(2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9): 1034-1039.
  18. Bournival, B.L., Vallejos, C.E. and Scott, J.W. (1989). An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theoretical and Applied Genetics, 78: 489-494.
  19. Chakrabarti, A.K. and Choudhury, B. (1975). Breeding brinjal resistant to little leaf disease. Proceedings of the National Academy of Sciences, India, Section B, 41: 379-385.
  20. Chen, J.F., Moriarty, G. and Jahn, M. (2004). Some disease resistance tests in Cucumis hystrix and its progenies from inter-specific hybridization with cucumber. In: Lebeda, A., Paris, H.S. (Eds.) editors. Progress in cucurbit genetics and breeding research. Olomouc: Palacky University, pp. 189-196.
  21. Christodoulakis, N.S., Lampri, P.N. and Fasseas, C. (2009). Structural and cytochemical investigaction of the silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany, 57: 432-438.
  22. Colla, G., Fiorillo1, A., Cardarelli, M. and Rouphael, Y. (2014). Grafting to Improve Abiotic Stress Tolerance of Fruit Vegetables. Acta Horticulturae, 1041: 119-126. 
  23. Colla, G., Rouphael, Y., Rea, E. and Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulphate salinization. Scientia Horticulturae, 135: 175-185.
  24. Danesh, D., Aarons, S., McGill, G.E. and Young, N.D. (1994). Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Molecular Plant-Microbe Interactions, 7: 464-471.
  25. Davis, A.R., Sakata, Y., Lopez-Galarza, S., Moroto, J.V. and Lee, S.G. (2008). Cucurbits grafting. Critical Reviews in Plant Sciences,27 (1): 50-74.
  26. de Souza, V.L. and Cafe-Filho, A.C. (2003). Resistance to Leveillula taurica in the genus Capsicum. Plant Pathology, 52: 613-619.
  27. Evans, M.D., Dizdaroglu, M. and Cooke, M.S. (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutation Research, 567(1): 1-61.
  28. Finkers, R., Bai, Y., van den Berg, P., van Berloo, R., Meijer-Dekens, F., ten Have, A. and van Kan, J., et al. (2008). Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica, 159: 83-92.
  29. Galatti, F.S., Franco, A.J., Ito, L.A., Charlo, H.C.O., Gaion, L.A. and Braz, L.T. (2013). Rootstocks resistant to Meloidogyne incognita and compatibility of grafting in net melon. Ceres, 60: 432-436.
  30. Gao, Q.H., Xu, K., Wang, X.F. and Wu, Y. (2008). Effect of grafting on cold tolerance ineggplant seedlings. Acta Horticulturae,771: 167-174.
  31. Garibaldi, A. and Gullino, M.L. (2010). Emerging soil-borne diseases of horticultural crops and new trends in their management. Acta Horticulturae,883: 37-46.
  32. Giannakou, I.O. and Karpouzas, D.G. (2003). Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Management Science, 59: 883-892.
  33. Gilardi,G., Gullino,M.L. and Garibaldi, A.(2011). Reaction of tomato rootstocks to selected soil-borne pathogens under artificial inoculation conditions. ActaHorticulturae, 914:345-348.
  34. Gisbert, C., Prohens, J. and Nuez, F. (2011). Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. International Journal of Plant Production, 5: 367-380.
  35. Giuffrida, F., Cassaniti, C., Agnello, M. and Leonardi, C. (2015). Growth and ionic concentration of eggplant as influenced by rootstocks under saline conditions. Acta Horticulturae, 1086: 161-166.
  36. Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G.L., Besse, P., Servaes, A. and Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168(2): 319-327.
  37. Guan, W. and Zhao, X. (2012). Defence mechanisms involved in disease resistance of grafted vegetables. Horticulture Science, 47(2): 164-170. 
  38. Hanson, P.M., Bernacchi, D., Green, S., Tanksley, S.D., Muniyappa, V., Padmaja, A.S., Chen, H., Kuo, G., Fang, D. and Chen, J. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of American Society of Horticultural Sciences, 125: 15-20.
  39. Harada, T. (2010). Grafting and RNA transport via phloem tissue in horticultural plants. Scientia Horticulturae,125: 545-550.
  40. Hartmann,H.T., Kester,D.E., Davies, F.T. and Geneve, R.(2010). Hartmann andKester’s Plant Propagation: Principles and Practices.Pearson Education, Inc., Publishing as Prentice Hall, One Lake Street, UpperSaddle River, New Jersey. pp. 415-464.
  41. Ito, L.A., Charlo, H.C.O., Castoldi, R., Braz, L.T. and Camargo M. (2009). Rootstocks selection to gummy stem blight resistance and their effect on the yield of melon ‘Bonus nº 2’. Revista Brasileira de Fruticultura, 31: 262-267.
  42. Johnson, S., Lnglis, D. and Miles, C. (2014). Grafting effects on eggplant growth, yield and verticillium wilt incidence. International Journal of Vegetable Science, 20 (1): 3-20.
  43. Juvick, J.A., Bolkan, H. and Tanksley, S.D., (1991) The Ve gene for race 1 Verticillium resistance is on chromosome 7. Rep. Tomato Genet. Cooperative, 41: 23–24.
  44. Kale, P.B., Mohod, U.V., Dod, V.N. and Thakare, H.S. (1986). Biochemical comparision in relation to resistance to shoot and fruit borer in brinjal. Vegetable Science, 13(2): 412-421.
  45. King, S.R., Davis, A.R., Liu, W. and Levi, A. (2008). Grafting for disease resistance. Horticulture Science, 43(6): 1673-1676.
  46. King, S.R., Davis, A.R., Zhang, X. and Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127: 106-111.
  47. Kumar, P., Lucini, L., Rouphael, Y., Cardarelli, M., Kalunke, R.M. and Colla, G. (2015). Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.Frontiers in Plant Science,6: 477-496. 
  48. Kusvuran, S., Kiran, S. and Ellialtioglu, S.S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Intech Journal, 481-506. doi.10.5772/62235.
  49. Lee, J.M., Kubota, C., Tsao, S.J., Bie, Z., Echevarria, P.H., Morra, L. and Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae, 127: 93-105.
  50. Lee, S.H., Ahn, S.J., Im, Y.J., Cho, K., Chung, G.C., Cho, B.H. and Han, O. (2005). Differentialimpact of low temperature on fatty acid unsaturation and lipoxygenase activity in fig leaf gourd and cucumber roots. Biochemical and Biophysical Research Communications, 330: 1194-1198.
  51. Li, X., Eck, H.J.V., Voort, J.N.A.M.R.v.d., Huigen, D.J., Stam, P. and Jacobsen, E.(1998). Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theoretical and Applied Genetics, 96: 1121-1128.
  52. Li, Y., Tian, X., Wei, M., Shi, Q. Yang, F. and Wang, X. (2015). Mechanism of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses.Turkish Journal of Botany, 39: 1-9.
  53. Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H., Xu, C. and Ren, H. (2015). A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(1): 251-259.
  54. Louws, F.J., Rivard, C.L. and Kubota, C. (2010). Grafting fruiting vegetables to manage soil borne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae, 127: 127-146.
  55. Mahasuk, P., Chinthaisong, J. and Mongkolporn, O. (2013). Differential resistances to anthracnose in Capsicum baccatum as responding to two Colletotrichum pathotypes and inoculation methods. Breeding Science, 63(3): 333-338.
  56. Marschner, H. (1995). Mineral Nutrition of Higher Plants. 2nded. Academic Press,London. 889p.
  57. Martin, S.E. and Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15: 1-6.
  58. Marukawa, S. and Takatsu, I. (1969). Studies on the selection of Cucurbita spp. as cucumber stock. 1. Compatibility, ability to tolerate low-temperature conditions and yield of black prickly cucumber. Bulletin Ibaraki Horticulture Experiment Station, 3: 11-18.
  59. Medina-Filho, H.P. and Stevens, M.A. (1980). Tomato breeding for nematode resistance: survey of resistant varieties for horticultural characteristics and genotype of acid phosphates. Acta Horticulturae, 100:383-391.
  60. Muthukumar, P. and Selvakumar, R. (2013). Glaustas Horticulture. New Vishal Publications, West Patel Nagar, New Delhi. pp. 203-255.
  61. Paplomatas, E.J., Elena, K., Tsagkarakou, A. and Perdikaris, A. (2002). Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. Acta Horticulturae,579: 445-449.
  62. Pavlou, G.C., Vakalounakis, D.J. and Ligoxigakis, E.K. (2002). Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Disease, 86: 379-382. 
  63. Pierce, L.C. (1971). Linkage tests with Ph conditioning resistance to race O, Phytophthora infestans. Report of the Tomato Genetics Cooperative, 21: 30.
  64. Pitrat, M., Risser, G., Bertrand, F., Blancard, D and Lecoq, H. (1996). Evaluation of a melon collection for disease resistance. In: Gomez-Guillamon M.L., Soria, C., Cuartero, J., Tores J.A., Fernandez-Munoz, R. (Eds.) Cucurbits towards 2000. Proceedings of the VI Eucarpia meeting on cucurbit genetics and breeding, Malaga, pp. 49-58
  65. Pogany, M.,Elstner, E.F. and Barna, B. (2003). Cytokinin gene introduction confers tobacconecrosis virus resistance and higher antioxidant levels in tobacco. Free Radical Research, 37:15-16.
  66. Rana Munns. (2011). Plant Adaptations to Salt and Water Stress: Differences and Commonalities. Advances in Botanical Research, 57: 1-32
  67. Rhodes, A.N. (1964). Inheritance of powdery mildew resistance in the genus Cucurbita. Plant Disease Reporter, 48: 54-55.
  68. Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E. and Williamson, V.M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of National Academy of Sciences USA,95: 9750-9754.
  69. Roy, B. and Basu, A.K. (2009). Abiotic stress tolerance in crop plants breeding and biotechnology. New India Publishing Agency, Pitam Pura, New Delhi. pp. 140-147.
  70. Rush, D.W. and Epstein, E. (1976). Genotypic responses to salinity. Differences between salt sensitive and salt tolerant genotypes of the tomato. Plant Physiology, 57: 162-166.
  71. Saccardo, F.,Colla, G., Crino, P.,Paratore, A. and Temperini, O. (2006). Genetic and physiological aspects of grafting in vegetable crop production. Italus Hortus, 13(1): 71-84.
  72. Sakata, Y., Sugiyama, M., Ohara, T. and Morishita, M. (2006). Inûuence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun and N. Shishkoff). Journal of Japan Society Horticulture Science, 75:135–140.
  73. Sambandam, C.N. and Chelliah, S. (1972). Cucumis callosus (Rottl.) Cogn. (syn. Cucumis trigonu Roxb.), a source of resistance to the fruit fly, Daucus cucurbutae. Annamalai University Agriculture Research Annals, 1: 118-119.
  74. Sarfatti, M., Abu-Abied, M., Katan, J. and Zamir, D. (1991). RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. Lycopersici race 1. Theoretical and Applied Genetics, 82: 22-26.
  75. Sarfatti, M., Katan, J., Fluhr, R. and Zamir, D. (1989). An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theoretical and Applied Genetics, 78: 755-759.
  76. Savvasa, D., Collab, G., Rouphaelc, Y. and Schwarzd, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae,127: 156-161.
  77. Schwarz, D., Rouphael, Y., Colla, G. and Venema, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127: 162-171
  78. Shalata, A., Mittova, V., Volokita, M., Guy, M. and Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum, 112(4): 487-494.
  79. Sharma, R.R. (2002). Propagation of Horticultural Crops: Principles and Practices. Indian Agricultural Research Institute, New Delhi, India. pp. 146-148.
  80. Silva, S.A.M., Rosana Rodrigues, Gonçalves, L.S.A. Sudre, C.P., Carmo, M.G.F. Medeiros, A.M. and Bento, CS. (2014). Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre and post harvest. Tropical Plant Pathology, 39(4): 335-341.
  81. Singh, H.B. and Kalda, T.S. (1997). Source of resistance to shoot and fruit borer in egg plant. Dr. Panjabrao Deshmukh Krishi Vidyapeeth Research Journal, 21(2): 126-128.
  82. Sze, H., Li, X., Palmgren, M.G. (1999). Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell, 11: 677-689.
  83. Takeda, H., Sato, A., Nishihara, E. and Arao, T. (2007). Reduction of cadmium concentration in eggplant (Solanum melongena) fruits by grafting onto Solanum torvum rootstock. Japanese Journal of Soil Science and Plant Nutrition,78: 581-586.
  84. Tanksley, S.D. and Costello, W. (1991). The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines measured by RFLP probing. Rep. Tomato Genet. Cooerative, 41: 60.
  85. Thapa SP, Miyao EM, Davis, M.R. and Coaker, G. (2015). Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theoretical and Applied Genetics,128(4): 681-92.
  86. Thomas, C.E., Inaba, T. and Cohen, Y. (1987). Physiological specialization in Pseudoperonospora cubensis. Phytopathology, 77: 1621-1624.
  87. Tirado, M.C., Clarke, R., Jaykus, L.A., McQuatters-Gollop, A. and Frank, J.M. (2010). Climate change and food safety: A review. Food Research International,43: 1745-65.
  88. Van der Biezen, E. A., Glagotskaya, T., Overduin, B., Nijkamp, H.J. and Hille, J. (1995). Inheritance and genetic mapping of resistance to Alternaria alternate f. sp. lycopersici in Lycopersicon pennellii. Molecular Genetics and Genomics,247: 453-461
  89. Venema, J.H., Dijk, B.E., Bax, J.M., Van Hasselt, P.R. and Elzenga, J.T.M. (2008). Graftingtomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environmental and Experimental Botany,63: 359-367.
  90. Wang, H.R., Ru, S.J., Wang, L.P. and Fong, Z.M. (2004). Study on the control of Fusarium wilt and Phytophthora blight in cucumber by grafting. Acta Agriculture Zhejiangensis, 16: 336-339 [in Chinese].
  91. Wang, J., Zhang, D.W. and Fang, Q. (2002). Studies on antivirus disease mechanism of grafted seedless watermelon. Journal of Anhui Agriculture University, 29: 336–339 [in Chinese].
  92. Waraich, W.A., Ahmad, R., Halim, A. and Aziz, A. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of .Plant Nutrition and Soil Science, 12(2): 221-224.
  93. Wehner, T.C., Walters, S.A. and Barker, K.R. (1991). Resistance to root-knot nematodes in cucumber and horned cucumber. Journal of Nematology, 23(4S): 611-614.
  94. Williamson, V. M., Ho, J.Y., Wu, F.F., Miller, N. and Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi in tomato. Theoretical and Applied Genetics, 87: 757-763.
  95. Wu, R., Wang, X., Lin, Y., Ma, Y., Liu, G., Yu, X. and Liu, B. (2013). Inter-species grafting caused extensive and heritable alternation of DNA methylation in solanaceous plants. Plos One, 8(4): 1-12.
  96. Yaghoobi, J., Kaloshian, I., Wen, Y. and Williamson, V.M. (1995). Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics, 91: 457-464.
  97. Yasar, F. (2007). Effects of salt stress on ion and lipid peroxidation content in green beans genotypes. Asian Journal of Biochemistry, 19(2): 1165–1169.
  98. Ying, S.C., Li, MS., Hai, Z.Z., Alain, P., Hao, W.L. and Xi, Z.B. (2015). Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae, 181: 81-88.
  99. Zamir, D., Ekstein, M.I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H.D. and Czosnek, H.(1994). Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-    1. Theoretical and Applied Genetics, 88: 141-146.
  100. Zink, F.W. and Gubler, W.D. (1985). Inheritance of resistance in muskmelon to Fusarium wilt. Journal of American Society of Horticultural Sciences, 110: 600-604.
  101. Zink, F.W., Gubler, W.D. and Grogan, R.G. (1983). Reaction of muskmelon germplasm to inoculation with Fusarium oxysporum f. sp. melonis race 2. Plant Disease, 67: 1251-1255. 
Global footprints


© 2015 ARCC JOURNALS. All Rights Reserved. Powered By ARCC JOURNALS