Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 38 issue 3 (september 2017) : 180-190

Role of antioxidant in seed quality- A review

M. Govindaraj, P. Masilamani, V. Alex Albert, M. Bhaskaran
1Agricultural Engineering College and Research Institute, Tamil Nadu Agriculture University, Kumulur-621 712, Tiruchirappalli, Tamil Nadu, India.
Cite article:- Govindaraj M., Masilamani P., Albert Alex V., Bhaskaran M. (2017). Role of antioxidant in seed quality- A review. Agricultural Reviews. 38(3): 180-190. doi: 10.18805/ag.v38i03.8977.
Antioxidant is any substance that delays, prevents or removes oxidative damage to a target molecule. This includes compounds of a non-enzymatic as well as an enzymatic nature.  Antioxidant enzymes e.g., superoxide dismutase, glutathione peroxidase, and glutathione reductase, which catalyze free radical quenching reaction. Nutrient-derived antioxidants like ascorbic acid (vitamin C), tocopherols and tocotrienols (vitamin E), carotenoids and other low molecular weight compounds such as glutathione and lipoic acid are involved in neutralizing free radicals. Reactive oxygen species (ROS) occur in tissues and cells and can damage DNA, proteins, carbohydrates and lipids. The ROS comprises both free radical (O2-, superoxide radicals; OH-, hydroxyl radical; HO2-, perhydroxy radical and RO-, alkoxy radicals) and non-radical (molecular) forms (H2O2, hydrogen peroxide and 1O2, singlet oxygen). These deleterious reactions are controlled in part by antioxidants that eliminate ROS and scavenge free radicals. Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. Seed priming methods have been used to increase germination characteristics under stress conditions. The beneficial effects of seed priming are associated with different physiological and biochemical changes.
 
  1. Afzal, I., Basra, S.M.A. and Ahmad, N. (2011). Hormonal priming induces salt tolerance in wheat through enhanced antioxidant defence system. Cereal Res. Commun, 39: 334-342.
  2. Afzal, I., Hussain, B., Basra, S.M.A. and Rehman, H. (2012). Priming with MLE reduces imbibitional chilling injury in spring maize. Seed Sci Tech. 40: 271–276.
  3. Ahmet, K., Murat, U. and Riza, D.A. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant. 29: 503-508.
  4. Anjorin, T.S, Ikokoh, P and Okolo, S. (2010). Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. Inter J Agri Biol. 12: 431–434.
  5. Arrigoni, O. and Detullio, M. C. (2000). The roll of ascorbic acid in cell metabolism: between gene-directed function and an predictable chemical reaction. Plant Physiol. 57: 781-788.
  6. Arrigoni, O., De Gara, L., Tommasi, F. and Liso, R. (1992). Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol. 99: 235-238.
  7. Bailly, C., Benamar, A., Corbineau, F. and Come D. (2000). Antioxidant systems in sunflower (Helian- thus annuus L.) seeds as affected by priming. Seed Sci Tech. 10: 35–42.
  8. Bailly, C., Benamar, A., Corbineau, F. and Come, D. (1996). Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant. 97: 104-110.
  9. Bailly, C., Bogatek-Leszczynska, R., Come D. and Corbineau, F. (2002). Changes in activities of anti-oxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci Res. 12: 47–55.
  10. Bandyopadhyay, U., Das, D. and Banerjee, R.K. (1999). Reactive oxygen species: oxidative damage and pathogenesis. current sci. 77: 658-666.
  11. Barciszweski J, Siboska G, Rattan S.I.S. and Clark B.F.C. (2000). Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul. 32: 257–265.
  12. Beecher, G.R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr. 133: 3248-3254.
  13. Belhattab, R., Larous, L., Kalantzakis, G., Boskou, D. and Exarchou, V. (2004). Antifungal properties of Origanum glandulosum Desf. extracts. J Food Agric & Environ. 2: 69-73.
  14. Belitz, H. D., and Grosch, W. (1999). Phenolic compounds, Food Chem. Berlin, Springer, 764–775.
  15. Beltagi, M.S. (2008). Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea. Afr J Plant Sci. 2: 118-123.
  16. Bergman, M., Varshavsky, L., Gottlieb, H.E. and Grossman, S.( 2001). The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry, 58: 143-152.
  17. Bhattacharjee, A. and Gupta, K. (1985). Effect of dikegulac sodium, a growth retardant, on the viability of sunflower seeds. Seed Sci Technol. 13: 165-174.
  18. Bray, C.M., Davision, P.A., Ashraf, M. and Taylor, R.M. (1989). Biochemical changes during osmo- priming of leek seeds. Ann Bot. 36: 185–193.
  19. Burguieres, E., McCue, P., Kwon, Y.I. and Shetty, K. (2007). Effect of vitamin C and folic acid on seed vigour response and phenolic-    linked antioxidant activity. Bioresour Technol, 98: 1393-1404.
  20. Carr, A., Samaras, K., Thorisdottir, A., Kaufmann, G.R., Chisholm, D.J. and Cooper, D.A. (1999). Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: acohort study. The Lancet, 353: 2093-2099.
  21. Chander, R. and Kapoor, N.K. (1990). High density lipoprotein is a scavenger of superoxide anions. Biochem Pharmacol, 40: 1663-1665.
  22. Chiu, K.Y., Chen, C.L. and Sung, J.M., (2002). Effect of priming temperature on storability of primed sh-2 sweet corn seed. Crop Sci. 42: 1996–2003.
  23. Chojnowski, M., Corbineau, F. and Come, D. (1997). Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and ageing. Seed Sci. Res. 7: 323-331.
  24. Chu, Y.H., Chang, C.L. and Hsu, H.F. (2000). Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agr. 80: 561-566.
  25. Darlington, A., Vishnevetskaia, K. and Blake, T.J. (1996). Growth enhancement and anti-transpirant activity following seed treatment with a derivative of 5-hydroxybenzimidazole (Ambiol) in four drought stressed agricultural species. Physiol Plant. 96: 217–222.
  26. De Gara, L., Paciolla, C., De Tullio, M.C., Motto, M. and Arrigoni, O. (2000). Ascorbate dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant., 109: 7-13.
  27. De Gara, L., Pinto, M.D. and Arrigoni, O. (1997). Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant, 100: 894-900.
  28. De Paula, M., Perez-Otaola, M., Darder, M., Torres, M., Frutos, G. and Martinezi-Honduvilla, C.J. (1996). Function of the ascorbate-    glutathione cycle in aged sunflower seeds. Physiol plant.96: 543-550.
  29. Dolatabadian, A. and Sanavy, S. A. M. M. (2008). Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 36: 61.
  30. Draganic, I. and Lekic, S. (2012). Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turk J Agric For. 36: 421-428.
  31. El-Tayeb, M. A. (2005). Response of barley grains to the interactive effects of salinity and salicylic acid. Plant Growth Regul. 45: 215-224.
  32. Exarchou, V., Nenadis, N., Tsimidou, M., Gerothanassis, I. P., Troganis, A. and Boskou, D. (2002). Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem. 50: 5294-5299.
  33. Foidl N, Makkar, H.P.S. and Becker, K. (2001). The potential of Moringa oleifera for agricultural and industrial uses. In: Proceedings of the International Workshop “What development potential for Moringa products?”. 47–67 pp.
  34. Foyer, C., Lelandais, M., Galap, C. and Kunert, K. J. (1991). Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97: 863-872.
  35. Fujikura, Y. and Karssen, C. M. (1992). Effects of controlled deterioration and osmopriming on protein synthesis of cauliflower seeds during early germination. Seed Sci Res. 2: 23-31.
  36. Gidrol, X., Lin, W. S., Degousee, N., Yip, S. F. and Kush, A. (1994). Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur J Biochem. 224: 21-28.
  37. Giles, G. I and Jacob, C. (2002). Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem. 383: 375–88
  38. Guan, L. M. and Scandalios, J. G. (2002). Catalase gene expression in response to auxin mediated developmental signals. Physiol. Plant., 114: 288-295.
  39. Hakkinen, S. H., Kaerenlampi, S. O., Heinonen, I. M., Mykkanen, H. M. and Toerroenen, A. R. (1998). HPLC method for screening of flavonoids and phenolic acids in berries. J. Sci. Food Agr. 77: 543-551.
  40. Halliwell, B. and Gutteridge, J. M. C. (1989). Free radicals, ageing and disease. Free Radic Biol Med., 2: 446-493.
  41. Hegedus, A., Erdei, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci. 160: 1085-1093.
  42. Hsu, J.L. and Sung, J.M. (1997). Antioxidant role of glutathione associated with accelerated aging and hydration of triploid watermelon seeds. Physiologia Plant, 100: 967-974.
  43. Ibanez, E., Kubatova, A., Senorans, F.J., Cavero, S., Reglero, G. and Hawthorne, S.B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 51: 375-382.
  44. Innocenti, A.M., Mazzucfa, S., Bitonti, M.B., De Gara, L., Liso, R. and Arrigoni, O. (1994). Endogenous rhythm of ascorbic acid in seedling roots of broad bean Plant Physiol Biochem. 32: 521-525.
  45. Karthikeyan, J. and Rani, P. (2003). Enzymatic and non-enzymatic antioxidants in selected Piper species. Indian J Exp Biol. 41: 135-140.
  46. Kirillova, I. G., Evsyunina, A. S., Puzina, T. I. and Korableva, N. P. (2003). Effects of Ambiol and 2-chlorethyl phosphonic acid on the content of phytohormones in potato leaves and tubers. Appl Biochem Microbiol. 39: 210–214.
  47. Krinsky, N. I. (1992). Mechanism of action of biological antioxidants. ýExp Biol Med, 200: 248-254.
  48. Leprince, O., Deltour, R., Thorpe, P. C., Atherton, N. M. and Hendry, G. A. (1990). The role of free radicals and radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytol, 116: 573-580.
  49. Li, C. and Sun, W. Q. (1999). Desiccation sensitivity and activities of free radical-scavenging enzymes in recalcitrant Theobroma cacao seeds. Seed Sci Res. 9: 209-217.
  50. MacDonald, T. and Rajasekaran, R. (2009). Seed preconditioning with natural and synthetic antioxidants induces drought tolerance in tomato seedlings. Hort Sci. 44:1323–1329. 
  51. Manach, C., Scalbert, A., Morand, C., Remesy, C. and Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr. 79: 727-747.
  52. Mandal, A. K. and Basu, R. N. (1983). Maintenance of vigour, viability and yield potential of stored wheat seed. Indian J. Agri. Sci. 53: 905-912.
  53. Marcus, D. L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J. S., Strafaci, J. A. and Freedman, M. L. (1998). Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol, 150: 40-44.
  54. Mazumdar, A., Subrata, A. D. A. K., Chatterjee, R. and Banerjee, R. K. (1997). Mechanism-based inactivation of lacrimal-gland peroxidase by phenylhydrazine: a suicidal substrate to probe the active site. ýBiochem J. 324: 713-719.
  55. McDonald, M. B. (1999). Seed deterioration: physiology, repair and assessment. Seed Sci Tech. 27: 177–237.
  56. Moron, M. S., Depierre, J. W. and Mannervik, B. (1979): Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim. Biophys. Acta, 582: 67-70.
  57. Moud, A.M. and Maghsoudi, K. (2008). Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J Agric Sci, 4(3): 351-358.
  58. Moure, A., Cruz, J. M., Franco, D., Domýìnguez, J. M., Sineiro, J., Domýìnguez, H., Nunez, M. J. and Parajo, J. C. (2001). Natural antioxidants from residual sources. Food Chem. 72: 145-171.
  59. Mustafa, M. and Lee, S. (1977). Biological effects of environmental pollutants: Methods for assessing biochemical changes. Assessing Toxic Effects of Environmental Pollutants. Ann Arbor Science Publishers, Ann Arbor, 105-120.
  60. Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D. and Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot. 53: 1237–1247.
  61. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M. and Floyd, R. A. (1990). Oxidative a/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci. 87: 5144-5147.
  62. Olson, J. C., Fraylick, J. E., McGuffie, E. M., Dolan, K. M., Yahr, T. L., Frank, D. W. and Vincent, T. S. (1999). Interruption of Multiple Cellular Processes in HT-29 Epithelial Cells by Pseudomonas aeruginosaExoenzyme S. Infect. Immun. 67: 2847-2854.
  63. Oyekale, K. O., Nwangburuka, C. C., Denton, O. A., Daramola, D. S., Adeyeye, J. A. and Akinkuotu, A. O. (2012). Comparative Effects of Organic and Inorganic Seed Treatments on the Viability and Vigour of Sesame Seeds in Storage. J Agr Sci. 4:187-195.
  64. Padma, P.R., Sumathi, S. and Aparna, S. (2000). Antioxidant status of the flowers of Caesalpinia pulcherrima. J Med Aromat Plant Sci. 23: 78-83. 
  65. Pallanca, J. E. and Smirnoff, N. (1999). Ascorbic Acid Metabolism in Pea Seedlings. A Comparison ofd-Glucosone, l-Sorbosone, andl-Galactono-1, 4-Lactone as Ascorbate Precursors. Plant Physiol., 120:.453-462.
  66. Palmer, H. J. and Paulson, K. E. (1997). Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev. 55: 353-361.
  67. Polidoros, A. and Scandalios, J. (1999). Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione-S-transferase gene expression in maize (Zea mays L.). Physiol Plant. 106: 112–20.
  68. Price, A. H. and Hendry, G. A. F. (1989). Stress and the role of activated oxygen scavengers and protective enzymes in plants subjected to drought. Biochem Soc Trans. 17: 493–494.
  69. Rafique, N., Raza, S.H., Qasim, M. and Iqbal, N.A.E.E.M. (2011). Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak. J. Bot, 43: 2677-2682.
  70. Raphael, K. R., Sabu, M. C. and Kuttan, R. (2000). Antidiabetic activity of Phyllanthus niruri. Amala Research Bulletin. 20: 19-25.
  71. Roghayyeh, S., Saeede, R., Omid, A. and Mohammad, S. (2014). The effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (sorghum bicolor l.) seeds under drought stress. J stress Physiol Biochem. 10: 5-13.
  72. Rouhi, H. R., Aboutalebian, M. A., Moosavi, S. A., Karimi, F. A., Karimi, F., Saman, M. and Samadi, M. (2012). Change in several antioxidant enzymes activity of Berseem clover (Trifolium alexandrinum L.) by priming. Int J Agr Sci. 2: 237-243.
  73. Sanchez-Gonzalez, I., Jimenez-Escrig, A. and Saura-Calixto, F. (2005). In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chem. 90: 133-139.
  74. Saroja, S., Padma, P.R., Radha P. and Thilagavathy, P. (2000). Enzymic and non enzymic antioxidants in Cichorium intybus. Curr Sci. 2: 37-41.
  75. Seneratna, T., Gusse, J. F. and McKersie, B. D. (1988). Age-induced changes in cellular membranes of imbibed soybean axes. Physiol Plant. 73: 85-91.
  76. Shafeek, M. R., Helmy, Y. I., Ahmed, A. A. and Magda, A. F. (2014). Productivity of Snap Bean plants by spraying of some antioxidants materials under sandy soil conditions in plastic house. Middle East J Agric Res. 3: 100-105
  77. Sreenivasulu, N., Grimm, B., Wobus, U. and Weschke, W. (2000). Differential response of antioxidant compound to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant. 109: 435-440.
  78. Tabatabaei, S. A. and Naghibalghora, S. M. (2013). The effect of ascorbic acid on germination characteristics and proline of sesame seeds under drought stress. Intl J Agri Crop Sci. 6: 208.
  79. Tanaka, K. and Sugahara, K. (1980). Role of superoxide dismutase in defense against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant and Cell Physiology. 21: 601-611.
  80. Taylorson, R. B. and Hendricks, S. B. (1981). Overcoming dormancy in seeds with ethanol and other anesthetics. Planta. 145: 507-510.
  81. Tommasi, F., Paciolla, C., de Pinto, M. C. and De Gara, L. (2001). A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot, 52: 1647-1654.
  82. Tripathi, M. K., Agrawal, I. S., Sharma, S. D. and Mishra, D. P. (2001). Effect of substitution of soybean meal with treated or untreated high glucosinolate mustard (Brassica juncea) meal on intake, digestibility, growth performance and body composition of calves. Anim Feed Sci, 94: 137-146.
  83. Tripathy, Y. B. and Upadhyay, A. K. (2001). Antioxidant property of Mucuna pruriens L. Curr Sci. 80: 1377-1378.
  84. Vajragupta O, Boonchoong P, Berliner, L.J. (2004). Manganese complexes of curcumin analogues: evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis. Free Radic Res. 38: 303–314. 
  85. Van Pijlen, J. G., Kraak, H. L., Bino, R. J. and De Vos, C. H. R. (1995). Effects of ageing and osmopriming on germination characteristics and chromosome aberrations of tomato (Lycopersicon esculentum Mill.) seeds. Seed Sci Technol, 23: 823-830.
  86. Wang, S. Y. and Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 48: 140-146.
  87. Weimberg, R. (1970). Enzyme levels in pea seedlings grown on highly salinized media. Plant Plant Physiol. 46: 466-470.
  88. Woodstock, L. W., Maxon, S., Faul, K. and Bass, L. (1983). Use of freeze-drying and acetone impregnation with natural and synthetic antioxidants to improve storability of onion, pepper and parsley seeds. J Am Soc Hortic Sci. 108: 692-696.
  89. Yanishlieva-Maslarova, N. N. and Heinonen, M. (2001). Sources of natural antioxidants. In J Pokorny, Antioxidants in food, 210–249. 
  90. Yasmeen, A., Basra, S.M.A., Wahid, A., Nouman, W. and Rehman, H.U. (2013). Exploring the potential of Moringa oleifera leaf extract (MLE) as a seed priming agent in improving wheat performance. Turk J Bot. 37: 512-520.
  91. Yildirim, A., Mavi, A., and Kara, A.A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem. 49: 4083–4089.
  92. Zheng, W. and Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 49: 5165-5170.

Editorial Board

View all (0)