- Akoijam, Y., Devi, A. and Singh, E. (2018). Effect of solid wastes amendment on growth and yield of Solanum melongena. Indian Journal Of Agricultural Research. 52(4): 409-413.
- Amenaghawon, N., Osemwengie, O., Omoregbe, O., Asogwa, U. (2015). Application of experimental design method for the optimisation of xanthan gum production from pineapple peels using xanthomonas campestris via submerged fermentation. Nigerian Journal of Technology. 34(3): 491-498.
- Ardila, C., Palacio, A., Barrera, R. (2018). Cáscara de piña como adsorbente de colorantes típicos de la industria textil. Ciencia en Desarrollo. 9(2): 159-166.
- Arib, R., Sapuan, S., Ahmad, M., Paridah, M., Zaman, H. (2006). Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Materials and Design. 27(5): 391-396.
- Banerjee, S., Ranganathan, V., Pattic, A., Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science and Technology. 82: 60-70.
- Batsy, C., Solvason, N., Sammons, V., Chambost, D., Bilhartz, M., El-Halwagi, M., Stuart, P. (2013). Product portfolio selection and process design for the forest biorefinery. In: Integrated Biorefineries Design, Analysis and Optimization; Stuart P, El-Halwagi M (eds). pp: 3-35. CRC Press, U.S.A.
- Bhavsagar, M., Awaz, H., Patange U. (2010). Manufacture of pineapple flavoured beverage from Chhana whey. Asian Journal of Dairy and Food Reseach. 29: Article Id: 1468.
- Chaudhary, V., Kumar, V., Singh, B., Kumar, R., Kumar, V. (2019). Impact of different drying methods on sensory properties of smotic dehydrated pineapple slices. Asian Journal of Dairy and Food Research. 38: 73-76.
- Conceição, M., Fernandes, Prado, M., de Resende, J. (2012). Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps. Korea-Australia Rheology Journal. 24 (3): 229-239.
- Dacera, D., Babel, S., (2008). Removal of heavy metals from contaminated sewage sludge using aspergillus niger fermented raw liquid from pineapple wastes. Bioresource Technology. 99 (6): 1682-1689.
- Damasceno, K., Alvarenga, C., Pereira, G., Costa, L., Bastianello, P., Leal, P., Arantes Pereira L. (2016). Development of cereal bars containing pineapple peel flour (Ananas comosus L. Merril). Journal of Food Quality. 39: 417-424.
- Dev, D., Ingle, U. (1982). Utilization of pineapple by-products and wastes-review. Indian Food Packer. 36(5): 15-21.
- Dickson, A., Allison-Oguru, E. and lsirimah, N. (2002). Fertility capability classification based land evaluation in relation to socio-economic conditions of small holder farmers in Bayelsa state of Nigeria. Indian Journal of Agricultural Research. 36 (1): 10-16.
- Finnegan, E., O’Beirne, D. (2015). Characterising deterioration patterns in fresh-cut fruit using principal component analysis. II: Effects of ripeness stage, seasonality, processing and packaging. Postharvest Biology and Technology. 100: 91-98.
- Gil, L., Maupoey, P. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production. 172: 1224-1231.
- Hameed, B., Krishni, R., Sata, S. (2009). A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of Hazardous Materials. 162(1): 305-311.
- Ibegbulem, C., Chikezie, P., Nweke, C., Nwanyanwu, C., Belonwu, D. (2014). Effects of processing pineapple-based must into wines by anaerobic fermentation. American Journal of Food Technology. 9 (3): 162-171.
- Idiata, D., Lyasele, J. (2014). Waste To Wealth/ : Production of Bioethanol From Pineapple Waste. Journal of Mechanical Engineering Science and Technology. 1(4): 282-287.
- Idise, O. (2012). Studies of wine produced from pineapple (Ananas comosus). International Journal of Biotechnology and Molecular Biology Research. 3(1): 1-7.
- Jaeger, L., Panadés, G., Bello, M. Neves, F., Viana, J. (2016). Pineapple juice and concentrates. In: Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition; Lobo M, Paullpp R (eds.). pp:140-152. John Wiley and Sons, West Sussex, UK
- Jin, B., Yin, P., Ma, Y., Zhao, L. (2005). Production of lactic acid and fungal biomass byrhizopus fungi from food processing waste streams. Journal of Industrial Microbiology and Biotechnology. 32(11-12): 678-686.
- Karim, R., Burhan, M., Jubayer, M. (2014). Optimization of pectin isolation method from pineapple (Ananas comosus l.) waste. Carpathian Journal of Food Science and Technology. 6(2): 116-122.
- Larrauri, J., Rupérez, P., Calixto, F. (1997). Pineapple shell as a source of dietary fiber with associated polyphenols. Journal of Agricultural and Food Chemistry. 45(10): 4028-4031.
- Lasprilla, D. (2011). Estado actual de fruticultura colombiana y perspectivas para su desarrollo. Revista Brasileira de Fruticultura. 33: 199-205.
- Linden, U. (2004). Pineapple juice and concentrate - a versatile and complex tropical submarket. Fruit Processing. 14: 428-433.
- MADR. (2019). Red de información y comunicación del sector agropecuario Colombiano. Ministerio de Agricultura y Desarrollo Rural. Avalable in: https://www.agronet.gov.co/Paginas/ProduccionNacionalDpto.aspx, accesed March 2019.
- Mainoo, N., Barrington, S., Whalen, J., Sampedro, L. (2009). Pilot-scale vermicomposting of pineapple wastes with earthworms native to accra, Ghana. Bioresource Technology. 100(23): 5872-5875.
- Montero-Calderón, M., Rojas-Graü, M., Aguiló-Aguayo, I., Soliva-Fortuny, R., Martín-Belloso, O. (2010). Influence of modified atmosphere packaging on volatile compounds and physicochemical and antioxidant attributes of fresh-cut pineapple (Ananas comosus). Journal of Agricultural and Food Chemistry. 58(8): 5042-5049.
- Murcia, J. (2013). Ensayos para la producción de etanol utilizando Ananas comosus de rechazo. Thesis. Universidad Pontificia Bolivariana, Medellín, Colombia. 61 pp.
- Murcia, J., Barrera, R., Zondervan, E. (2019). Process design and techno-economic analysis of a pineapple wine production plant under the context of the Choco-Colombia región. Computer Aided Chemical Engineering. 46: 277-282.
- Murcia, J., Ardila, A., Barrera, R. (2020). Producción de etanol a partir de piñas de rechazo de cultivos del Chocó. Revista Ion. 33: 45-53.
- Nakthong, N., Wongsagonsup, R., Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products 105: 74-82.
- Nigam, J. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology. 80(2): 189-193.
- Nanda, A., Sarkar, R. and Mondal, S. (2012). The socio-economic status of pineapple growers under contract farming condition. Indian Journal of Agricultural Research. 46(3): 256-261.
- Paull, R., Chen, C. (2014). Pineapple: postharvest quality maintenance guidelines. UH–CTAHR, Fruit, Nut and Beverage Crops F_N32: 1-6. Available in: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/F_N-32.pdf, accessed may 2018.
- Pérez, J., Barrera, R., Ramírez, G. (2015). Integration of Colombians forest commercial crops in thermochemical biorefinery concepts: A Review. Colombia Forestal. 18: 273-294.
- Petri, D. (2015). Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science. DOI: 10.1002/APP.42035.
- Reinhardt, A., Rodriguez, L. (2009). Industrial processing of pineapple-trends and perspectives. Acta Horticulturae. 822: 323-328.
- Roda, A., De, Faveri, D., Giacosa, S., Dordoni, R., Lambri, M. (2016). Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. Journal of Cleaner Production. 112: 4477-4484.
- Roda, A., De, Faveri, D., Dordoni, R., Valero, E., Nuncio, N., carbonell, A., Frutos, M., Lambri, M. (2017). Pineapple wines obtained from saccharification of its waste with three strains of Saccharomyces cerevisiae. Journal of Food Processing and Preservation. 41: e13111.
- Roda, A., Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. International Journal of Food and Science Technology. 54: 1009-1017.
- Sah, B., Vasiljevic, T., McKechnie, S., Donkor, O. (2015). Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. Journal of Dairy Science. 98(9): 5905-5916.
- Sanewski, G., Bartholomew, D., Paull, R. (eds). (2018). The pineapple: botany, production and uses. CAB Intnal, Wallingford, 341.
- Santoshkumar, P., Patil, A. (2006). Wine production from pineapple must supplemented with sources of Nitrogen and Phosphorus. Karnataka Journal of Agricultural Sciences. 19(3): 562-567.
- Sinha, N., Sidhu, J., Barta, J., Wu, J., Cano, M. (eds). (2012). Handbook of fruits and fruit processing, John Wiley and Sons, USA. 677 pp.
- Singh, N., Singh, R., Feroze, S., Rani, P. (2016). Growth and instability of pineapple production in Manipur, India. Indian Journal of Agricultural Research. Article Id: A-4359 50: 88-91.
- Smith, L. (1988). Indices of physiological maturity and eating quality in Smooth Cayenne pineapples. II. Indices of physiological maturity. Queensland Journal of Agricultural and Animal Sciences. 45: 219-228.
- Sruamsiri, S. (2007). Agricultural wastes as dairy feed in Chiang Mai. Animal Science Journal. 78(4): 335-341.
- Tochi, B., Wang, Z., Xu, S., Zhang, W. (2008). Therapeutic application of pineapple protease (Bromelain): A Review. Pakistan Journal of Nutrition. 7: 513-520.
- Tran, C., Sly, L., Mitchell, D. (1998). Selection of a strain of aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World Journal of Microbiology and Biotechnology. 14 (3): 399-404.
- Tropea, A., Wilson, D., La, Torre, L., Lo, Curto, R., Saugman, P., Troy-Davies, P., Dugo, G., Waldron, K. (2014). Bioethanol production from pineapple wastes. Journal of Food Research. 3(4): 60-70.
- Upadhyay, A., Lama, J., Tawata, S. (2013). Utilization of pineapple waste: A review. Journal of Food Science and Technology. 6: 10-18.
- Urrego, V., Vásquez-Noreña, P., Barrera, R. (2018). Uso de cáscara de piña como adsorbente de rojo 40 (típicode la industria alimentaria). Revista Colombiana de Investigaciones Agroindustriales. 5(1): 87-95.
- USDA. (2018). Basic report: 09266, Pineapple, raw, all varieties. United States Department of Agriculture, National Agricultural Library. Available in: https://www.nal.usda.gov/, accessed may 2019.
- Van, Tran, A. (2006). Chemical analysis and pulping study of pineapple crown leaves. Industrial Crops and Products. 24(1): 66-74.
- Vidal Valverde, C., Herranz, J., Blanco, I., Rojas Hidalgo, E. (1982). Dietary fiber in Spanish fruits. Journal of Food Science. 47: 1840-1845.
- Wang, C., Lin, P., Chang, J. (2006). Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate -buffered culture seeded with municipal sewage sludge. Process Biochemistry. 41(6): 1353-1358.
- Wu, Z., Zhang, M., Adhikari, B. (2012). Application of high pressure argon treatment to maintain quality of fresh-cut pineapples during cold storage. Journal of Food Engineering. 110(3): 395-404.
Submitted Date : 7-08-2020
Accepted Date : 28-10-2020
First Online: