A Bio-refinery Approach from Pineapple in the Context of Non-Technified Crops: The Choco-Colombian Region

DOI: 10.18805/ag.R-165    | Article Id: R-165 | Page : 317-327
Citation :- A Bio-refinery Approach from Pineapple in the Context of Non-Technified Crops: The Choco-Colombian Region.Agricultural Reviews.2020.(41):317-327
Juan Fernando Murcia P., Alba Nelly Ardila, Rolando Barrera-Zapata rolando.barrera@udea.edu.co
Address : Grupo CERES Agroindustria e Ingeniería, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín Colombia. 
Submitted Date : 7-08-2020
Accepted Date : 28-10-2020


A pineapple bio refinery that could be adapted to the geographical and cultural conditions of non-technified crops, i.e., the Choco-Colombia region is described. Some characteristics of the region such as the geographical conditions and the relative backwardness related to economic, social, cultural and infrastructure conditions, lead to a relatively high waste of harvested pineapple, with a negative economic and environmental impact. Such situation is also identified in several areas dedicated to pineapple cultivation all over the world, where the pineapple crop usually does not reach export quality and high amount of fruits could end up as wastes. This document initially presents a description of the main generalities of pineapple cultivation and its market. Then, some of the main products of pineapple and its residues are described. Finally, the peculiarities of pineapple cultivation in the Choco-Colombia region are presented and a possible scenario of pineapple biorefinery for that region is proposed. This contribution is expected to be an adequate review material for analysis and decision making in technical and economic feasibility studies to obtain various products from pineapple residues in non-technified crops, motivating both public and private sectors to invest and promote agro-industry initiatives from pineapple waste. 


Added value products Pineapple biorefinery Waste valorization


  1. Akoijam, Y., Devi, A. and Singh, E. (2018). Effect of solid wastes amendment on growth and yield of Solanum melongena. Indian Journal Of Agricultural Research. 52(4): 409-413.
  2. Amenaghawon, N., Osemwengie, O., Omoregbe, O., Asogwa, U. (2015). Application of experimental design method for the optimisation of xanthan gum production from pineapple peels using xanthomonas campestris via submerged fermentation. Nigerian Journal of Technology. 34(3): 491-498.
  3. Ardila, C., Palacio, A., Barrera, R. (2018). Cáscara de piña como adsorbente de colorantes típicos de la industria textil. Ciencia en Desarrollo. 9(2): 159-166.
  4. Arib, R., Sapuan, S., Ahmad, M., Paridah, M., Zaman, H. (2006). Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Materials and Design. 27(5): 391-396.
  5. Banerjee, S., Ranganathan, V., Pattic, A., Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science and Technology. 82: 60-70.
  6. Batsy, C., Solvason, N., Sammons, V., Chambost, D., Bilhartz, M., El-Halwagi, M., Stuart, P. (2013). Product portfolio selection and process design for the forest biorefinery. In: Integrated Biorefineries Design, Analysis and Optimization; Stuart P, El-Halwagi M (eds). pp: 3-35. CRC Press, U.S.A.
  7. Bhavsagar, M., Awaz, H., Patange U. (2010). Manufacture of pineapple flavoured beverage from Chhana whey. Asian Journal of Dairy and Food Reseach. 29: Article Id: 1468.
  8. Chaudhary, V., Kumar, V., Singh, B., Kumar, R., Kumar, V. (2019). Impact of different drying methods on sensory properties of smotic dehydrated pineapple slices. Asian Journal of Dairy and Food Research. 38: 73-76.
  9. Conceição, M., Fernandes, Prado, M., de Resende, J. (2012). Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps. Korea-Australia Rheology Journal. 24 (3): 229-239.
  10. Dacera, D., Babel, S., (2008). Removal of heavy metals from contaminated sewage sludge using aspergillus niger fermented raw liquid from pineapple wastes. Bioresource Technology. 99 (6): 1682-1689.
  11. Damasceno, K., Alvarenga, C., Pereira, G., Costa, L., Bastianello, P., Leal, P., Arantes Pereira L. (2016). Development of cereal bars containing pineapple peel flour (Ananas comosus L. Merril). Journal of Food Quality. 39: 417-424.
  12. Dev, D., Ingle, U. (1982). Utilization of pineapple by-products and wastes-review. Indian Food Packer. 36(5): 15-21.
  13. Dickson, A., Allison-Oguru, E. and lsirimah, N. (2002). Fertility capability classification based land evaluation in relation to socio-economic conditions of small holder farmers in Bayelsa state of Nigeria. Indian Journal of Agricultural Research. 36 (1): 10-16.
  14. Finnegan, E., O’Beirne, D. (2015). Characterising deterioration patterns in fresh-cut fruit using principal component analysis. II: Effects of ripeness stage, seasonality, processing and packaging. Postharvest Biology and Technology. 100: 91-98.
  15. Gil, L., Maupoey, P. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production. 172: 1224-1231.
  16. Hameed, B., Krishni, R., Sata, S. (2009). A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of Hazardous Materials. 162(1): 305-311.
  17. Ibegbulem, C., Chikezie, P., Nweke, C., Nwanyanwu, C., Belonwu, D. (2014). Effects of processing pineapple-based must into wines by anaerobic fermentation. American Journal of Food Technology. 9 (3): 162-171.
  18. Idiata, D., Lyasele, J. (2014). Waste To Wealth/ : Production of Bioethanol From Pineapple Waste. Journal of Mechanical Engineering Science and Technology. 1(4): 282-287.
  19. Idise, O. (2012). Studies of wine produced from pineapple (Ananas comosus). International Journal of Biotechnology and Molecular Biology Research. 3(1): 1-7.
  20. Jaeger, L., Panadés, G., Bello, M. Neves, F., Viana, J. (2016). Pineapple juice and concentrates. In: Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition; Lobo M, Paullpp R (eds.). pp:140-152. John Wiley and Sons, West Sussex, UK 
  21. Jin, B., Yin, P., Ma, Y., Zhao, L. (2005). Production of lactic acid and fungal biomass byrhizopus fungi from food processing waste streams. Journal of Industrial Microbiology and Biotechnology. 32(11-12): 678-686.
  22. Karim, R., Burhan, M., Jubayer, M. (2014). Optimization of pectin isolation method from pineapple (Ananas comosus l.) waste. Carpathian Journal of Food Science and Technology. 6(2): 116-122.
  23. Larrauri, J., Rupérez, P., Calixto, F. (1997). Pineapple shell as a source of dietary fiber with associated polyphenols. Journal of Agricultural and Food Chemistry. 45(10): 4028-4031.
  24. Lasprilla, D. (2011). Estado actual de fruticultura colombiana y perspectivas para su desarrollo. Revista Brasileira de Fruticultura. 33: 199-205.
  25. Linden, U. (2004). Pineapple juice and concentrate - a versatile and complex tropical submarket. Fruit Processing. 14: 428-433.
  26. MADR. (2019). Red de información y comunicación del sector agropecuario Colombiano. Ministerio de Agricultura y Desarrollo Rural. Avalable in: https://www.agronet.gov.co/Paginas/ProduccionNacionalDpto.aspx, accesed March 2019.
  27. Mainoo, N., Barrington, S., Whalen, J., Sampedro, L. (2009). Pilot-scale vermicomposting of pineapple wastes with earthworms native to accra, Ghana. Bioresource Technology. 100(23): 5872-5875.
  28. Montero-Calderón, M., Rojas-Graü, M., Aguiló-Aguayo, I., Soliva-Fortuny, R., Martín-Belloso, O. (2010). Influence of modified atmosphere packaging on volatile compounds and physicochemical and antioxidant attributes of fresh-cut pineapple (Ananas comosus). Journal of Agricultural and Food Chemistry. 58(8): 5042-5049.
  29. Murcia, J. (2013). Ensayos para la producción de etanol utilizando Ananas comosus de rechazo. Thesis. Universidad Pontificia Bolivariana, Medellín, Colombia. 61 pp. 
  30. Murcia, J., Barrera, R., Zondervan, E. (2019). Process design and techno-economic analysis of a pineapple wine production plant under the context of the Choco-Colombia región. Computer Aided Chemical Engineering. 46: 277-282.
  31. Murcia, J., Ardila, A., Barrera, R. (2020). Producción de etanol a partir de piñas de rechazo de cultivos del Chocó. Revista Ion. 33: 45-53.
  32. Nakthong, N., Wongsagonsup, R., Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products 105: 74-82. 
  33. Nigam, J. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology. 80(2): 189-193.
  34. Nanda, A., Sarkar, R. and Mondal, S. (2012). The socio-economic status of pineapple growers under contract farming condition. Indian Journal of Agricultural Research. 46(3): 256-261.
  35. Paull, R., Chen, C. (2014). Pineapple: postharvest quality maintenance guidelines. UH–CTAHR, Fruit, Nut and Beverage Crops F_N32: 1-6. Available in: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/F_N-32.pdf, accessed may 2018.
  36. Pérez, J., Barrera, R., Ramírez, G. (2015). Integration of Colombians forest commercial crops in thermochemical biorefinery concepts: A Review. Colombia Forestal. 18: 273-294.
  37. Petri, D. (2015). Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science. DOI: 10.1002/APP.42035.
  38. Reinhardt, A., Rodriguez, L. (2009). Industrial processing of pineapple-trends and perspectives. Acta Horticulturae. 822: 323-328.
  39. Roda, A., De, Faveri, D., Giacosa, S., Dordoni, R., Lambri, M. (2016). Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. Journal of Cleaner Production. 112: 4477-4484.
  40. Roda, A., De, Faveri, D., Dordoni, R., Valero, E., Nuncio, N., carbonell, A., Frutos, M., Lambri, M. (2017). Pineapple wines obtained from saccharification of its waste with three strains of Saccharomyces cerevisiae. Journal of Food Processing and Preservation. 41: e13111.
  41. Roda, A., Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. International Journal of Food and Science Technology. 54: 1009-1017.
  42. Sah, B., Vasiljevic, T., McKechnie, S., Donkor, O. (2015). Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. Journal of Dairy Science. 98(9): 5905-5916.
  43. Sanewski, G., Bartholomew, D., Paull, R. (eds). (2018). The pineapple: botany, production and uses. CAB Intnal, Wallingford, 341.
  44. Santoshkumar, P., Patil, A. (2006). Wine production from pineapple must supplemented with sources of Nitrogen and Phosphorus. Karnataka Journal of Agricultural Sciences. 19(3): 562-567.
  45. Sinha, N., Sidhu, J., Barta, J., Wu, J., Cano, M. (eds). (2012). Handbook of fruits and fruit processing, John Wiley and Sons, USA. 677 pp.
  46. Singh, N., Singh, R., Feroze, S., Rani, P. (2016). Growth and instability of pineapple production in Manipur, India. Indian Journal of Agricultural Research. Article Id: A-4359 50: 88-91.
  47. Smith, L. (1988). Indices of physiological maturity and eating quality in Smooth Cayenne pineapples. II. Indices of physiological maturity. Queensland Journal of Agricultural and Animal Sciences. 45: 219-228.
  48. Sruamsiri, S. (2007). Agricultural wastes as dairy feed in Chiang Mai. Animal Science Journal. 78(4): 335-341.
  49. Tochi, B., Wang, Z., Xu, S., Zhang, W. (2008). Therapeutic application of pineapple protease (Bromelain): A Review. Pakistan Journal of Nutrition. 7: 513-520.
  50. Tran, C., Sly, L., Mitchell, D. (1998). Selection of a strain of aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World Journal of Microbiology and Biotechnology. 14 (3): 399-404.
  51. Tropea, A., Wilson, D., La, Torre, L., Lo, Curto, R., Saugman, P., Troy-Davies, P., Dugo, G., Waldron, K. (2014). Bioethanol production from pineapple wastes. Journal of Food Research. 3(4): 60-70.
  52. Upadhyay, A., Lama, J., Tawata, S. (2013). Utilization of pineapple waste: A review. Journal of Food Science and Technology. 6: 10-18.
  53. Urrego, V., Vásquez-Noreña, P., Barrera, R. (2018). Uso de cáscara de piña como adsorbente de rojo 40 (típicode la industria alimentaria). Revista Colombiana de Investigaciones Agroindustriales. 5(1): 87-95. 
  54. USDA. (2018). Basic report: 09266, Pineapple, raw, all varieties. United States Department of Agriculture, National Agricultural Library. Available in: https://www.nal.usda.gov/, accessed may 2019.
  55. Van, Tran, A. (2006). Chemical analysis and pulping study of pineapple crown leaves. Industrial Crops and Products. 24(1): 66-74.
  56. Vidal Valverde, C., Herranz, J., Blanco, I., Rojas Hidalgo, E. (1982). Dietary fiber in Spanish fruits. Journal of Food Science. 47: 1840-1845.
  57. Wang, C., Lin, P., Chang, J. (2006). Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate -buffered culture seeded with municipal sewage sludge. Process Biochemistry. 41(6): 1353-1358.
  58. Wu, Z., Zhang, M., Adhikari, B. (2012). Application of high pressure argon treatment to maintain quality of fresh-cut pineapples during cold storage. Journal of Food Engineering. 110(3): 395-404.

Global Footprints