Effect of physical seed treatment on yield and quality of crops: A review

DOI: 10.18805/ag.v0iOF.7304    | Article Id: R-1623 | Page : 1-14
Citation :- Effect of physical seed treatment on yield and quality of crops: A review .Agricultural Reviews.2017.(38):1-14

M. Govindaraj, P. Masilamani*, V. Alex Albert and M. Bhaskaran1

masil_mahesh@yahoo.com
Address :

Agricultural Engineering College and Research Institute, T.N.A.U., Kumulur-621 712, Tiruchirappalli, Tamil Nadu.

Submitted Date : 25-05-2016
Accepted Date : 29-11-2016

Abstract

Seed treatments are the biological, physical and chemical agents and techniques applied to seed to provide protection and improve the establishment of healthy crops. The benefits of seed treatments are increased germination, uniform seedling emergence, protect seeds or seedlings from early season diseases and insect pests improving crop emergence and its growth. Anthropogenic changes of the soil, water and atmosphere due to the use of different chemical additives for raising plants productivity led to searching alternative ways. Safe methods for increasing the yield includes the reasonable use of chemicals and substitution of some of them by appropriate physical treatments viz., magnetic field, gamma irradiation, electric field, laser irradiation, sound, healing energy, light and heat.

Keywords

Energy treatment Germination Seedling vigour Seedling growth Seed yield.

References

  1. Aladjadjiyan, A. and Kakanakova, A. (2009). Physical methods in agro-food chain. Journal of Central European Agriculture. 9: 789-793.
  2. Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants asmarkers. Biotech. Adv. 27: 84-93.
  3. Ashraf, M., Cheema, A. A., Rashid M. and Qamar, Z. (2003). Effect of gamma rays on M1 generation in Basmati rice. Pak. J. Bot., 35: 791-795.
  4. Bache D. H. and Macaskill, I. A. (1984). “Vegetation in civil and landscape engineering,” in Vegetation in Civil and Landscape Engineering, Granada, London, p. 317.
  5. Bai, X. D., Gao, P. X., Wang, Z. L. and Wang, E. G. (2003). Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82: 4806-4808.
  6. Baskin, C. C. (2003). Breaking physical dormancy in seeds-Focussing on the lens. New Phytol. 158: 229-232.
  7. Baskin, C. C. and Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Academic Press, San Diego, CA.
  8. Beggs, P.J. (2004). Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy. 34: 1507-1513.
  9. Benford M. S. (2002). Implications of plant genome research to alternative therapies: A case for radiogenic metabolism in humans J. Theoretics. 4: 1-14.
  10. Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B. and Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot. 42: 2281-2290.
  11. Braam, J. and Davis, R. W. (1990). Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis, Cell. 60: 357–364.
  12. Cakmak, T., Dumlupinar, R. and Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 31: 120-129.
  13. Carbonell, M. V., Martinez, E. and Flores, M. (2005). Influencia de campos magneticos estacionarios de 125 mT en la germinación de semillas de girasol. Revista Eidenar. 1: 34-39.
  14. Chivukula, V. and Ramaswamy, S. (2014). Effect of different types of music on rosa chinensis plants. Int. J. Environ. Sci. Dev. 5: 431.
  15. Coghlan A., (1994). Good vibrations give plants excitations, New Sci.. 142: 10.
  16. Creath, K. and Schwartz, G. E. (2004). Measuring effects of music, noise, and healing energy using a seed germination bioassay. J Altern Complem Med. 10: 113-122.
  17. De Souza, A., Garcia, D., Sueiro, L., Licea, L. and Porras, E. (2005). Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season. Span J. Agric. Res. 3: 113-122
  18. De Souza A., Garcia, D., Sueiro, L., Gilart, F., Porras, E. and Licea, L. (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics, 27: 247-257.
  19. De Villiers A.J., Van Rooyen, M. W. and Theron, G. K. (2002) Germination strategies of Strandveld Succulent Karoo plant species for revegetation purposes: I. Temperature and light requirements. Seed Sci. & Technol. 30: 17-33.
  20. Denton, O. A., Oyekale, K. O., Nwangburuka, C. C., Daramola, D. S. and Adeyeye, J. (2013) Influence of High Dry Heat Temperature on Seed Germination, Seedling Emergence and Seedling Vigour of three Cultivars of Corchorus olitorious Seeds. Am J Res Comm. 1: 98-114.
  21. Dinoev St., Antonov, M., Stoyanov, T. and Gerogieva, Chr. (2004). Spectral impact of low-power laser radiation on wheat and maize parameters. Bulg Acad Sci. 54.
  22. Downs, R. J. and Thomas J. F. (1982). Phytochrome regulation of flowering in the long-day plant, Hyoscyamusniger. Plant Physiol. 70: 898–900. 
  23. Flores, J., Jurado, E. and Chapa-Vargas, L. (2011). Seeds photoblastism and its relationship with some plant traits in 136 cacti species. Environ Exp Bot. 71: 79-88.
  24. Flores, J., Gonzalez-Salvatierra, C. and Jurado, E. (2015). Effect of light on seed germination and seedling shape of succulent species from Mexico. J plant Ecol. 1-6
  25. Folta K. M. (2004). Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 135: 1407-1416.
  26. Gagliano, M. (2012). Green symphonies: a call for studies on acoustic communication in plants, Behav Ecol. ars206.
  27. Galland, P. and Pazur, A. (2005) Magnetoreception in plants. J Plant Res. 118: 371-389.
  28. Galt, S., Sandblom, J., Hamnerius, Y., Hjerik, P., Saalman, E. and Nardon, B. 1993. Experimental search for combined AC, DC magnetic field effects. Bioeletromagnetics, 14: 315-327.
  29. Garcia-Sancho, F. and Javier, P. (1994). Effects of extremely low-frequency electromagnetic fields on ion transportin several cells. Bioenergetics. 15: 6-10.
  30. Goins G. D., Yorio, N. C., Sanwo, M. M. and Brown, C. S. (1997). Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot. 48: 1407-1413.
  31. Hanafy, M. S., Husein, G. and Abdelmoty, E. (2005). Effect of 50 Hz 6 kV/m electric field on the protein molecular structureand the growth characteristics of the broad bean. Phys Alive. 13: 41-54.
  32. Hernandez A. C., Dominguez, P. A., Cruz- Orea A., Ivanov R., Carballo, C.A. and Zepeda, B. R. (2010). Laser in agriculture (Review). Int. Agrophys. 24: 407-422.
  33. Hicks C. (1963). “Growing corn to music,” Popular Mechanics, 183: 118-121.
  34. Huang, R., Sukprakarn S., Phavaphutanon L., Juntakool, S. and Chaikul, C. (2006). A comparison of electric field treatments to hydropriming on cucumber seed germination enhancement. Kasetsart J (Nat Sci). 40: 559-65.
  35. Jiang, X. L. (1981). A preliminary experimental report on killing pests by laser. (Liangsh; zhuzangHubifood school, wuhan, china. 4: 33-36.
  36. Jones D. B., Bolwell, G. P. and Gilliat, G. J. (1986). Amplification,by pulsed electromagnetic fields, of plantgrowth regulator phenylalanine ammonialyase during differential in suspension cultured plant cells. Bioelectricity, 5: 1-12.
  37. Kelentarov, M. I. (1961). The Use of high voltage electrical current on cotton production. J Azerbaijan Sci Acad. 17: 25-29.
  38. Khurana E. and Singh, J. S. (2001) Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Curr Sci. 80:748–57.
  39. Kiatgamjorn, P., Khan-ngern, W. and Nitta, S. (2002). The Effect of Electric Field on Bean Sprout Growing. In International Conference on Electromagnetic Compatibility (ICEMC2002), Bangkok, Thailandededs. 237-241.
  40. Kim, H. H., Goins, G. D., Wheeler, R. M. and Sager, J. C. (2004). Green- light supplementation for enhanced lettuce growth under red and blue light-emitting diodes. Hort Sci., 39:1617-1622.
  41. Kovacs, E. and Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cell. Micron.
  42. Kuzin A. M., Vagabova M. E., Vilenchk, M. N. and Gogvadze, V. G. (1986). Stimulation of plant growth by exposure to low levelã’radiation and magnetic field, and their possible mechanism of action. Environ Exp Botany. 26: 163-167.
  43. Li, H., Tang, C., Xu Z., Liu, X. and Han, X. (2012). Effects of different light sources on the growth of non heading chinese cabbage (Brassica campestris L.). J Agr Sci. 4: 262–273.
  44. Lord A. E. (1975). Proceedings of the Technical Program, in Proc. National Noise and Vibration Control Conference, Chicago, Illinois. Acoustical Publications. Inc.
  45. Lynikiene, S., Pozeliene, A. and Rutkauskas, G. (2006). Influence of corona discharge field on seed viability and dynamics of germination. Institute of Agricultural Engineering. Lithuanian Agricultural University. Raudondvaris. Kaunor.L.T.54132. Lithuania.
  46. Mckeona, G. M. and Mott, J. J. (1982). The effect of temperature on the field softening of hard seed of Sylosanthes humilis and S. hamate in a dry monsoonal climate. Aust J Agr Res. 33:75-85.
  47. Mitchell, C. A., Both, A., Bourget, C. M., Kuboto, C., Lopez, R. G., Morrow, R. C. and S. Runkle, (2012). LEDs: The future of greenhouse lighting. Chronica Horticulture. 55: 6-12.
  48. Mohammad, M. R. and Abdollah, B. (2011). Influence of Gamma Irradiation on Some Physiological Characteristics and Grain Protein in Wheat (Triticum aestivum L.). World Appl Sci J. 15: 654-659.
  49. Mohammadi, G., Khah, E. M., Honarmand, S. J., Shirkhani, A. and G. Shabani. (2012). Effects of Seedhardness Breaking Techniques on Okra (Abelmoschus esculentus L.) Germination. Int J Agric Crop Sci., 4: 264-273.
  50. Morar, R., Munteanu, R., Simion, E., Muteanu, I. and Dascalescu, L. (1999). Electrostatic treatment of bean seeds, IEEE-    IA. 35: 208-212.
  51. Mustafayev, S. A. (1974). Using of high voltage electrical current on obtaining early maturing cotton cultivars. In Proceeding of the Conference of USSR on Science and Social Sciences, Baku-Azerbaijan, 150-153.
  52. Nedialkov, N., Nenov, S. and Parmakov, D. (1996). Pre-sowing treatment of seeds by magnetic field. Zemes Ukio Inzinerija, Nokslo Darbai. 27: 141-150.
  53. Nenadic, K., Franjo, J. and Stjepan, P. (2008). An investigation of automatic treatment of seeds with low power laser beam. Automatika. 49: 127-13.
  54. Nimmi, V. and Madhu, G. (2009). Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chili (Capsicum annun L.). Int. Agroph. 23: 195-198.
  55. Nkomo, M. and Kambizi, L. 2009. Effects of pre-chilling and temperature on seed germination of Corchorus olitorius L. Afr J Biotech. 8: 1078-1081.
  56. Ozel, B. (2003). High voltage electrical current on the yield and yield components of different bread wheat cultivars. M.Sc Thesis, University of Kahramanmaras Sutcu Imam. Institute of Natural and Applied Sciences. Department of Field Crops, Turkey.
  57. Pietruszewski, S. and Martinez, E. (2015). Magnetic field as a method of improving the quality of sowing material: a review. Int Agrophys. 29: 377-389.
  58. Pietruszewski, S., Muszynski, S. and Dziwulska, A. (2007), Electromagnetic fields and electromagnetic radiation as non-    invasive external stimulants for seeds (selected methods and responses). Int Agrophys. 21: 95.
  59. Podlesny, J., Stochmal, A., Podlesna, A. and Misiak, L. E. (2012). Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. J Plant Growth Regul. 67: 227-233.
  60. Pons, T. L. (2000) Seed responses to light. In Fenner M (ed). Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed. Wallingford, UK: CABI Publishing, 237–60.
  61. Putincev, A. F. and Platonova, N. A. (1997). Treatment of seed in electromagnetic field (in Russian). Agriculture, 4: 45-46.
  62. Rojas-Arechiga, M., Orozco-Segovia, A. and Vazquez-Yanes, C. (1997) Effect of light on germination of seven species of cacti from the Zapotitlan Valley in Puebla, Mexico. J. Arid. Environ. 36: 571–8.
  63. Roney-Dougal, S. M. and Solfvin, J. (2002). Field study of enhancement effect on lettice seeds: Their germination rate, growth and health. J Soc Psychical Res. 66: 129–143.
  64. Rotcharoen, T., Khan-ngern, W. and Nitta, S. (2002). The effect of electric field to rice plant growing. ICEMC, Bangkok.
  65. Saebo, A., Krekling, T. and Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell Tiss Org. 41:177–185.
  66. Samy, C. G. (1998). Magnetic seed treatment. I . Influence on flowering, siliqua and seed characters of cauliflower. Orissa J. Hort. 26: 68-69.
  67. Sangeeta, M. (2016). Effect of temperature and light on the seed germination of Sida cordifolia L. Int J Scientific & Res Publ. 6: 264-266.
  68. Sedighi, N. T., Abedi, M. and Hosseini, S. E. (2013). Effect of electric field intensity and exposing time on some physiological properties of maize seed. Eur J Exp Biol. 3: 126-134.
  69. Simpson, G. G. and Dean, C. (2002). Arabidopsis, the Rosetta stone of flowering time? Science. 296: 285-289. 
  70. Singh, B. and Datta P. S. (2009). Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat Phys Chem. 1-5.
  71. Singh, D., Basu, C., Meinhardt-Wollweber, M. and Roth, B. (2015). LEDs for energy efficient greenhouse lighting. Renewable Sustainable Energy Rev. 49: 139-147.
  72. Smigel, V. N., Kovalenko A. F. and Babitsin G. S. (1968). Shocking of potato before planting with high voltage electrical current. Journal of Mechanization and Electrification Research Institute of Celyabinsk, 31: 76-82.
  73. Stange, B. C., Rowland, R. E., Rapley B. I. and Podd, J. V. (2002). ELF magnetic fields increase aminoacid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics. 23: 347-354.
  74. Stutte, G. W., Edney, S. and Skerritt, T., (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-    emitting diodes. Hort Science. 44: 79–82.
  75. Umechuruba, C. I., Bassey, I. N. and Harold, K. O. (2013). Effect of Physical Treatments on Seed Germination of Solanum gilo Raddi grown in Akwa Ibom State. Acad for Environ & Life Sci. 2: 27- 30.
  76. Vasilevski, N. L. (2003). Bergman space structure, commutative algebras of Toeplitz operators, and hyperbolic geometry. Integr Equat Oper Th. 46: 235-251.
  77. Wahab, O. D. (2011). Effect of Dry Heat Temperature on Seed Germination and Seedling Emergence of three Cultivars of Corchorus olitorious Seeds. B. Agric. Project Report. Department of Agronomy and Landscape Design, Babcock University, Nigeria. 32pp.
  78. Walters, M., Midgley, J. and Somers, M. J. (2004). Effects of fire and fire intensity on the germination and establishment of Acacia karroo, Acacia nilotica, Acacia luederitzii and Dichrostachys cinerea in the field. BMC ecology, 4.
  79. Weinman, R. (2000). The Recovery of VortexHealing. In: London and Southeast Connection. Series The Recovery of VortexHealing. Online document at: www.vortexhealing.com.
  80. Yanagi, T. and Okamoto. K. (1997). Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Hort. 418: 223-228.
  81. Yesim, K., Zeynep, E. and Havser E. V. (2015). The Effect of Different Gamma Radiation Applied on Tokak-157/37 Barley (Hordeum vulgare) and Karahan-99 Wheat (Triticum aestivum) on M1 Generation. International Journal of Secondary Metabolite, 2: 8-12.
  82. Yia J., Bochua, W., Xiujuana, W. and Daohonga, W. (2003). “Effect of sound wave on the metabolism of Chrysanthemum roots,” Colloids and Surfaces B: Biointerfaces, 29: 115-118.
  83. Yiyaoa L., Wanga, B., Xuefenga, L., Chuanrena, D. and Sakanishib, A. (2002). “Effects of sound field on the growth of Chrysanthemum callus,” Colloids and Surfaces B: Biointerfaces. 24: 321-329.
  84. www.btinternet.com/nlpwessex/ Documents/quantumbiology.htm
  85. www.npr.org/sections/thesalt/2013/05/21/185758529/vertical-pinkhouses-the-future-of-urban-farming
     

Global Footprints