Morphological and physiological responses of dual purpose wheat (Triticum aestivum L.) to nitrogen and seed rates: A review

DOI: 10.18805/ag.v37i4.6458    | Article Id: R-1619 | Page : 279-289
Citation :- Morphological and physiological responses of dual purpose wheat(Triticum aestivum L.) to nitrogen and seed rates: A review .Agricultural Reviews.2016.(37):279-289

Rakesh D. Ranjan1, Ajay S. Gontia3, Awadhesh K. Pal1*, Sudhir Kumar1, Birender Kumar2
Kanchan Bhamini2 and Nishi Kumari1 

Address :

Bihar Agricultural University, Sabour, Bhagalpur-813 210, Bihar, India.

Submitted Date : 6-05-2016
Accepted Date : 30-08-2016


Growing human population at alarming rate has forced the decline in fallow land available for grazing leading to excessive pressure on fodder production for livestock existence. Growing crops for dual purpose i.e. both grains and fodder together may be a good option for reducing this burden. Wheat may be a better option to mitigate the shortage of grains as well as fodder. Many works have been carried out in this direction considering wheat but the production has been a limitation. Among various agronomical methods, modifications of fertilizers concentrations and seed rate are very crucial which affect yield. Nitrogen is one of major components of fertilizers which plays crucial role in crop growth influencing major physiology including photosynthesis, protein synthesis, nucleic acids synthesis etc. Seed rate is directly related to canopy expansion and solar radiation interception, thereby strongly influencing the use of environmental resources by changing relative importance of intra and interplant competition for light, water and nutrients during crop development and thereby affects wheat yield.  Looking at the importance of the issue, this review was carried out to get the information about the effect of seed rates and nitrogen levels on the forage and grain yield of dual purpose wheat genotypes for enhanced productivity.


Dual purpose Fodder Nitrogen Seed rate Wheat.


  1. Adhikari R.S., Bora S.S. and Singh S.S. (1989). The influence of bacterial blight on dry matter chlorophyll content and productivity of wheat. Progres. Hort., 19:109-112.
  2. Aggarwal P.K. and Sinha S.K. (1984). Differences in water relations and physiological characteristics in leaves of wheat associated with leaf position on the plant. Plant Physical, 74:1041-1045.
  3. Ahmad M.M., Yousaf N. and Zamir M.S. (2000). Response of wheat growth, yield and quality to varying application of nitrogen and phosphorous. J. Agric. Res., 38: 289-29.
  4. Ali A., Choudhry M.A, Malik M.A., Ahmad R. and Saifullah. (2000). Effect of various doses of nitrogen on the growth and yield of two wheat cultivar. Pak. J. Biol. Sci., 3: 1004-1005.
  5. Ali A., Ahmad A., Syed W.H., Khaliq T., Asif M., Aziz M. and Mubeen M. (2011). Effects of nitrogen on growth and yield components of wheat. Int. J. Agri. Sci. (Lahore), 23: 331-332.
  6. Ali M.A., Rehman R., Siddique M. and Rashid M. (1996). Effect of seeding rate and row spacing on wheat yield. J. Agric. Res., 34: 351-357. 
  7. Amirjani M.R. (2010). Salinity and Photochemical Efûciency of Wheat. Internat. J. Bot., 6: 273-279.
  8. Anyia A.O. and Herzog H. (2003). Water use efficiency leaf area and leaf gas exchange of cowpeas under mid season drought. Europ. J. Agron., 30: 1-13.
  9. Arduini I., Masoni A., Ercoli L. and Mariotti M. (2006). Grain yield and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rates. Europ. J. Agron., 25: 309-318. 
  10. Ashraf M. and Bashir A. (2003). Relationship of photosynthetic capacity at the vegetative stage and during grain development with grain yield of two hexaploid wheat (Triticum aestivum L.) cultivars differing in yield. Europ. J. Agron., 19: 277-287. 
  11. Austin R.B., Edrich J.A., Ford M.A. and Blackwell R.D. (1977). The fate of dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Ann. Bot., 41: 1309–1321
  12. Baloch M.S., Shah I.H., Nadim M.A., Khan M.I. and Khakwani A.A. (2010). Effect of seeding density and planting time on growth and yield attributes of wheat. J. Anim. Plant Sci., 20: 239-240.
  13. Beadle C.L., Neilson R.E. Jarvis P.G. and Talbot H. (1981). Photosynthesis as related to xylem water potential and carbon dioxide concentration in Sitka spruce. Physiol. Plant., 52: 391-400.
  14. Bhilare R.L. (2009). Physiological basis of yield variation in oat in relation to nitrogen levels under different cutting management. J. Maharashtra Agril. Uni., 34: 164-167. 
  15. Bindraban P.S. (1999). Impact of canopy nitrogen profile in wheat on growth. Field Crop Res. 63: 63-77.
  16. Bishnoi B.R. and Hughes J.I. (1979). Agronomic performance and protein contents of tall planted triticale, wheat and rye. Agron. J., 71:350–360.
  17. Bisht J.K., Chandra S., Singh R.D. and Gupta H.S. (2004). Role of Nitrogen in the yield enhancement of clipped wheat. Trop. Agri. 51:211–215.
  18. Bonachela S., Orgaz F. and Fereres. E. (1995). Winter cereals grown for grain and for the dual-purpose of forage plus grain production. Field Crops Res. 44: 1-11.
  19. Burman U., Garg. B.K.,Yadav O.P. and Kathju S. (2011). Effect of terminal water stress on growth, plant water status and yield of pearl millet genotypes. Indian J. Plant Physiol., 16: 276-284.
  20. Carr P.M., Horsley R.D. and Poland W.W. (2003). Tillage and seeding rate effects on wheat cultivars. Crop Sci., 43: 202–    209.
  21. Ceulemans R., Impens I. and steenackers V. (1988). Variations in photosynthetic. anatomical and enzymatic leaf traits and correlations with growth in recently selected populus hybrid. Can. J. for Res., 17:273-283 
  22. Chandra S., Varshncy M.L., Singh J. and Singh S.K. (1992). Response of wheat varieties to different levels of nitrogen. Narendra Deva. J. Agric. Res., 7(1): 169-171. [Wheat, Barley and Triticale Absts., 11: 4321; 1994].
  23. Chaudhary A.U., Mehmood R. (1998). Determination of optimum level of fertilizer nitrogen for varieties of wheat. Pak. J. Bio. Sci., 4: 351-353. 
  24. Chieri K., Kakizaki N., Kozai T. and Kasahara K. (2001). Growth and net phototraphic and photosynthesis rate of tomato plantlets during photoauthtrophic and photomixotrophic micropropagation. Horti. Sci., 36: 20-39.
  25. Cornic G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP Synthesis. Trends Plants Sci., 5:187-188.
  26. Day S.K., Singh V.P and Murty K.S. (1989). Effect of low light at different stages of development of growth and yield of rice. Indian J. Plant Physiol., 23: 156-162.
  27. Dean G. and Munford S. (2004). Evaluation of dual purpose cereal varieties. http://www. aanro.net/ccma/docs/24.pdf 
  28. Demotes-Mainard S. and Jeuffroy M.H. (2001). Incorporating radiation and nitrogen nutrition into a model of kernel number in wheat. Crop Sci., 41: 415–423.
  29. Dove H. and Kirkegaard J. (2014). Using dual-purpose crops in sheep-grazing systems. J. Sci. Food Agri., 94: 1276-83.
  30. Dunphy D.J., Mc Daniel M.E. and Holt E.C. (1982). Effect of fodder utilization on wheat grain yield. Crop Sci., 22: 106–    109.
  31. Farquhar G.D., and Sharkey T.D. (1982). Stomatal conductace and photosynthesis. Ann. Rev. Plant Physiol., 33:317-345.
  32. Fieser B.G., Horn G.W. and Krenzer E.G. (2006). Effects of planting date and forage allowance on steer growth performance and grain yield in a dual-purpose winter wheat system. Profess. Anim. Sci., 22: 424-431.
  33. Fluegel S.M. and Johnson J.B. (2001). The effect of soil nitrogen levels and wheat resistance on the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae) J. Kans. Entomol. Soc., 74: 49-55.
  34. Gary M. D. and Shibler R.M. (1970). Study the varietal differences in net photosynthesis of soybean leaves. Crop Sci. Soc. Amer., 10: 42-45.
  35. Gebbing T., Schnyder H. and Kühbauch W. (1999). The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant Cell Environ., 22: 851–858
  36. Geleta B., Atak M., Baenziger P.S., Nelson L.A., Baltenesperger D.D, Eskridge K.M, Shipman M.J. and Shelton D.R. (2002). Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat. Crop Sci., 42: 827-832 
  37. Gooding M.J., Pinyosinwat A. and Ellis. R.H. (2002). Responses of wheat grain yield and quality to seed rate. J. Agric. Sci., 138: 317-331.
  38. Gupta N. and Thind S. (2015). Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. J. Agric. Sci. Tech., 17: 75-86.
  39. Gwal H.B., Tiwari R.J., Jain R.C., and Prajapati F.S. (1999). Effect of different levels of fertilizer on growth, yield and quality of late sown wheat. RACHIS Newslett., 18: 42-44.
  40. Hameed E., Shah W.A., Shad A.A., Bakht J. and Muhammad T. (2003). Effect of different planting dates, seed rate and nitrogen levels on wheat. Asian J. Plant Sci., 2: 467-474.
  41. Hamerlynck E.P., Huxman T.E., Nowak R.S., Redar S., Loik M.E., Jordan D.N., Zitzer S.F, Coleman J.S., Seemann J.R. and Simith S.D. (2000). Photosynthetic responses of Larrea tridentatu to a step-increase in atmospheric CO2 at the Nevuda desert FACE facility. J. Arid Environ., 44: 425-436.
  42. Heber U, Neimanis S. and Lange O.L. (1986). Stomatal aperture, photosynthesis and water fluxes in mesophyll cells as affected by the abscission of leaves. Simultaneous measurements of gas exchange, light scattering and chlorophyll fluorescence. Planta, 167: 554-562.
  43. Heidmann T., Thomsen A. and Schelde K. (2000). Modeling soil water dynamics in winter wheat using different estimates of canopy development. Ecol. Modeling. 129: 229-243.
  44. Hnilicka F. and Peter J. (2003). The effect of abiotic stresses on the rate of photosynthesis, transpiration and water use efficiency WUE in wheat plants during ontogeny. Sci. Agri. Bohemica, 34: 41-47Y. 
  45. Hossain F., Epplin M. and Krenzer E.G. (2003). Planting dates influence on dual purpose winter wheat forage yield, grain yield and test weight. Agron. J., 95: 1197-1188.
  46. Hsiao T.C. (1973). Plant response to water stress. Ann. Rev. Plant Physiol., 24: 519-570.
  47. Hsu P. and Walton P.D. (1971). Relationships between yield and its components and structures above the flag leaf node in spring wheat. Crop. Sci. 11: 190–193.
  48. Hussain S., Sajjad A., Hussain M.I. and Saleem M. (2001). Growth and yield response of three wheat varieties to different seeding densities. Int. J. Agric. Biol., 1560-8530. 
  49. IGFRI (2013). Vision 2050. ICAR-Indian Grassland and Fodder Research Institute http://www.igfri.res.in/2013/Vision-    2050.pdf (cite visited on 13/07/2016)
  50. Iqbal A., Akbar N., Khan H. Z., and Bakar M.A. (2010). Influence of nitrogen fertilization on growth and yield of two wheat varieties. Crop and environ., 1: 57- 58
  51. Iqbal J., Hayat K., Hussain S., Ali A. and Muhammad Ahmad Alias Haji Ahmad Bakhsh,(2012). Effect of Seeding Rates and Nitrogen Levels on Yield and Yield Components of Wheat (Triticum aestivum L.). Pak. J. Nut., 11: 531-    536, 2012
  52. Iqtidar H., Ayyaz K.M. and Ahmad K.E. (2006). Bread wheat varieties as influenced by different nitrogen levels. J. Zhejiang Univ. Sci., 7: 70-78. 
  53. Isreal (1982). Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol., 84: 835-840.
  54. Jahfari H.A. (2004). Modeling the growth, radiation use efficiency and yield of new wheat cultivars under varying nitrogen rates. M.Sc. Thesis, Deptt. Agronomy, Univ. Agri., Faisalabad
  55. Jan M.T., Shah M. and Khan S. (2002). Type of N fertilizer rate and timing effect on wheat production. Sarhad J. Agri., 18: 405-410.
  56. Jarial S. (2014). An approach in disseminating dual purpose wheat technology: a case from Uttarakhand, India. Indian Res. J. Ext. Edu., 14.
  57. Jiang Y., Zhang Q., Zhang S., Wang G., Yue W. and Yao Y. (2004). Responses of photosynthetic characteristics, stomatal conductance and transpiration of wheat to the increase of atmospheric CO2 concentration. J. Anhui Agric. Uni., 32: 169-173.
  58. Kalpana M., Chettia M.B. and Ratnum B.P. (2003). Phenological changes in photosynthetic rate, transplation’s and stomatal conductance and their relationship with seed yield in cowpea. Indian J. of Pl. Physiol., 8: 160-164.
  59. Khalid N., Muhammad A.K., Mohammad S.B., Kawsar A., Muhammad A.N., Ejaz A.K., Shahen S. and Muhammad A. (2014). Effect of different seeding rates on yield attributes of dual-purpose wheat. Sarhad J. Agric. 30: 83-91.
  60. Khalil I.H., Carver B.F., Krenzer E.G, MacKown C.T. and Horn G.W. (2002). Genetic trends in winter wheat yield and test weight under dual-purpose and grain only management systems. Crop Sci., 42: 710-715.
  61. Khalil S.K., Khan F., Rehman A., Muhammad F., Amanullah A., Khan Z., Wahab S., Akhtar S., Zubair M., Khalil I.H., Kalan M. and Humayun S. (2011). Dual purpose wheat for forage and grain yield in response to cutting, seed rate and nitrogen. Pak. J. Bot., 43: 937-947.
  62. Kindred, D.R., Verhoeven T.M., Weightman R.M., Swanston J.S., Agu R.C., Brosnan J.M., and Sylvester-Bradley R. (2008). Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J. Cereal Sci., 48: 46-57.
  63. Kostrej A. and Balogh Z. (1996). Relationships between air temperature and humidity regime and growth characteristics of winter wheat. Rost. Vyr., 42: 1-4.
  64. Kumar P., Dube S.D. and Chouhan V.S. (1998). Relationship among yield and some physiological traits in wheat. Indian J. Plant Physiol., 3: 229-230.
  65. Kumar P., Joythi N., Lukshmi K., Bisht K.S., and Mani V.P. (1999). Effect of photon flux densities on photosynthetic behaviour of Rice, Rugi, Barny and millet and soybean genotypes in relation to photosynthetic pigments Indian J. Plant Physiol., 5: 19-25.
  66. Kumar R. and Kujur R. (2003). Role of secondary traits in improving the drought tolerance during flowering stage in rice Indian J. Plant Physiol., 8: 236-240.
  67. Lafond G.P. (1994). Effects of row spacing, seeding rate and nitrogen on yield of barley and wheat under zero-till management. Can. J. Plant Sci., 74: 703- 711. 
  68. Larson K., Krenzer E. and Kochenower R. (2005). Irrigated dual purpose wheat planting dates, seeding rates, varieties in Southeastern Colorado. http://www. Colostate.edu/Depts/prc/ pubs/wtwifortex.05-1.pdf.
  69. Lloveras J., Manet J., Viudas J., Lopez A. and Santiveri P. (2004). Seeding rate influenced yield and yield components of irrigated winter wheat in Mediterranean climate. Agron. J., 96: 1258-65
  70. Longping Y., Virman S.S. and Chanzion M. (1988). Hybrid rice achievements and outlook. Progress in lrrigated Rice Research. IRRI Philippines.
  71. Lopez B., Fuentes L.M., Castillo J.E. and López-Garrido F.J. (1998). Effects of tillage crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crop Res., 57: 265-276.
  72. Lukuyu B., Franzel S., Ongadi P.M. and Duncan A.J. (2011). Livestock feed resources: Current production and management practices in central and northern rift valley provinces of Kenya. Livestock Res. for Rural Develop, 23.
  73. Mandal K.G. and Sinha A.C. (2004). Nutrient Management Effects on Light Interception, Photosynthesis, Growth, Dry matter Production and Yield of Indian Mustard (Brassica juncea). J. Agron. Crop Sci., 190: 119-129. 
  74. Maqsood M., Ali A., Aslam Z., Saeed M. and Aslam S. (2002). Effect of irrigation and nitrogen levels on grain yield and quality of wheat. Int. J. Agric. Biol., 4: 164- 165.
  75. Mariotti M., Arduini I. and Lulli L (2003). Traslocazione della biomassa nel frumento duro durante il grain-filling M. Mori, M. Fagnano (Eds.), Proceedings of the XXXV Congress of the Italian Society of Agronomy, Napoli, 16–18 September, Imago Media, Caserta, Italy, pp. 339–340
  76. Maxwell K. and Johnson G.N. (2000). Chlorophyll fluorescence a practical guide. J. Exp. Bot., 51: 659-668. 
  77. Moghaddam M.B. Ehdaie and Waines J.G. (1998). Genetic vant effects on yield and yield components of late planted wheat. Crop Sci., 34: 1298-1303.
  78. Moghaddam M.B., Ehdaie and Waines J.G. (1998). Genetic variation for and interrelationships among agronomic traits in landraces of bread wheat from south western Iran. J. Genet. Breed., 52: 73-81. 
  79. Morgounov A., Zykin V., Belan I., Roseeva L., Zelenskiy Y., Gomez-Becerra H.F., Budak H, and Bekes F. (2010). Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900–2008. Field crops res., 117: 101-112. 
  80. Mukherjee J. and Sastri C.V.S. (2003). PAR distribution and radiation use efficiency in tomato crop canopy. J. of Agromet., 5: 62-67.
  81. Murata Y. (1961). Studies on the photosynthesis of rice plants and its cultural significance. Bul. Nat. Inst. Agric. Sci. (Japan). Series. D, 9 : 1-169. 
  82. Murty K.S., Dey S.K., and Jachuck P.J. (1992). Physiological traits of certain restorers in hybrid rice breeding. IRRN, 12: 7.
  83. Nataraja K.N. and Jacob J. (1999). Clonal diffrences in photosynthesis in hevea brasiliensis mall. arg. Photosynthetica, 36: 89-98.
  84. Naveed K. (2013). Enhancement of dual-purpose wheat productivity through agronomic techniques. Pak. J. Bot., 45: 1299-1305.
  85. Naveed K., Khan M.A., Baloch M.S. and Ali K. (2014). Effect of different seeding rates on yield attributes of dual-    purpose wheat. Sarhad J. Agric., 30. 
  86. Njuguna M.N., Munene M., Mwangi H.G., Waweru J.K. and Akuja T.E. (2010). Effect of seeding rate and nitrogen fertilizer on wheat grain yield in marginal areas of eastern Kenya. J. Animal Plant Sci. 7: 834- 840.
  87. Noy-Meir I. and Briske D.D. (2002). Response of wild wheat populations to grazing in Mediterranean grasslands: the relative influence of defoliation, competition, mulch and genotype. J. Appl. Ecol., 39: 259-278.
  88. Ojima M. and Kawashima R. (1968). Studies on the seed production of soybean varietal differences in photosynthetic rate of soybean. Proc. Crop Sci. Soc. Jab., 37: 667-675.
  89. Ozturk A., Calgar O. and Bulut S. (2006). Growth and yield response of facultative wheat to winter sowing, freezing sowing and spring sowing at different seeding rates. Agron. J. 192: 10-16.
  90. Parry M.A., Reynolds M., Salvucci M.E., Raines C., Andralojc P.J., Zhu X.G., Price G.D., Condon A.G. and Furbank, R.T. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot., 62: 453-467. 
  91. Pate J.S., Peoples M.B. and Atkins C.A. (1983). Post anthesis economy of carbon in cultivar of cowpea. J. Exp. Biol., 34: 544-562.
  92. Patel T.U., Arvadia M.K., Patel H.H., Patel A.M. and Gajjar M.M. (2013). Productivity of oat (Avena sativa) under the influence of cutting management and nitrogen application. Bioinfo lett. 10: 377-378.
  93. Pochaba L. and Wegrzyn S. (2001). Variability of some characters in winter wheat and their relations.,Ogolnopolskie Symposium. Genetyka Ýlosciowa Roslin Uprawnych. BiuletynInstytutu-Hodowli-i- Aklimatyzacji-Roslin, 216: 261-266.
  94. Poysa, V. W. (1985). Effect of forage harvest on grain yield and agronomic performance of winter triticale, wheat and rye. Canadian J. Plant Sci., 65: 879-888. 
  95. Prasad P.V.V., Staggenborg S.A. and Ristic Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.H., Saseendran, S.A., Eds.; Advances in Agricultural Systems Modeling Series 1. ASA-CSSA: Madison, WI, USA, pp. 301–355. 
  96. Prasad R. (2003). Protein-energy malnutrition and fertilizer use in India. Fertilizer News 49: 65-67.
  97. Przulj N. and Momcilovic V. (2001). Genetic variation for dry matter and nitrogen accumulation and translocation in two-    rowed spring barley. Eur. J. Agron., 15: 255–265
  98. Ram L. (1978). Diallel analysis in durum wheat. Ph-D Thesis C. S. A. U Kanpur. 
  99. Reynolds M.P., Acevedo E., Sayre K.D. and Fischer R.A. (1994). Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37: 149-160.
  100. Richards R.A. (1996). Defining selection criteria to improve yield under drought. Plant Growth Regul., 20: 157-166.
  101. Roberts T.L. (2009). The role of fertilizer in growing the world’s food. Better Crop., 93: 12-15. 
  102. Sabir M.R., Ahmad I. and Shahzad M.A. (2000). Effect of nitrogen and phosphorus on yield and quality of two hybrids of maize (Zea mays L.). J. Agric. Res., 38: 339-346. 
  103. Sastak Z. (1966). Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biol. Plant., 8: 336-346.
  104. Savin, R. and Slafer, G.A. (1991). Shading effects on the yield of an Argentinian wheat cultivar. J. Agric. Sci., 116: 1-7. 
  105. Schulze E.D. (1986). Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Ann. Rev. Plant Physiol, 37: 247-274.
  106. Shah S.A., Harrison S.A., Boquet D.J, Colyer P.D. and Moore S.H. (1994). Management effects on yield and yield components of late planted wheat. Crop Sci., 34: 1298-1303.
  107. Shahzad M.A., Din W.U., Sahi S.T., Khan M.M., Ehsanullah and Ahmad M. (2007). Effect of sowing dates and seed treatment on grain yield and quality of wheat. Pak. J. Agri. Sci., 44: 581-583.
  108. Shanahan, J.F., Smith D.H. and. Welsh J.R. (1984). An analysis of post-anthesis sink-limited winter wheat grain yields under various environments. Agron. J., 76: 611-615. 
  109. Sheshshayee M.S., Prasud B.T.K., Nataraj K.N., Shankar A.G., Prasad T.G. and Udayakumar M. (1996). Ratio of intercellular CO2 concentration to stomatal conductance is a reflection of mesophyll efficiency. Curr. Sci., 70: 672-675.
  110. Singh P., Agrawal M. and Agrawal S.B. (2009). Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environ. Pollution, 157: 871-880.
  111. Singh S.J., Sinha K.K., Pandey I.B. and Mishra S.S. (2000). Cultural and chemical weed control in late sown wheat. J. Res. Birsa Agri. Uni., 12: 249-251.
  112. Singh R.K., Agarwal R.L and Sandip K. Singh (2007). Integrated nutrient management in wheat (Triticum aestivum). Ann. Agric. Res. New series. 28:200-24. 
  113. Singh T.P., Deshmukh P.S., Srivastava G.C., Kushwaha S.R. and Mishra S.K. (2005). Growth rate of chickpea (Cicer arietinum L.) genotypes under different planting lates. Indian J. Plant Physiol., 10: 254-259. 
  114. Sivakumar M.V.K. (1978). Predication of leaf area index in soybean. Ann. Bot., 42: 21-253
  115. Smocak J. (1975). The relation of morphological, physiological character to plant productivity. Genalika a Slechteni, 14 : 161-168. 
  116. Tahir I.S.A. and Nakata N. (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J. Agron. Crop Sci., 191: 106-115.
  117. Taiz L. and Zeiger E. (2002) Plant physiology (3rd Ed.) Sinauer associates. Inc. publishers, Massachusetts. 
  118. Tompkins D.K., Hultgreen G.E., Wright A.T. and Fowler D.B. (1991). Seed rate and row spacing of no-till winter wheat. Agron. J., 83: 684-689.
  119. Van Herwaarden A.F., Farquhar G.D., Angus J.F., Richards R.A. and Howe G.N. (1998). ‘Haying-off’, the negative grain yield response of dry land wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Aust. J. Agric. Res., 49: 1067–1081
  120. Watson D.J. (1952). Comparative physiological studies on the growth of field crops variation in net assimilation of leaf area between species and varieties within and between years. Ann. Bot., 11: 41-76. 
  121. Whaley J.M., Sparkes D.L., Fouldes M.J., Sperik J.H., Semere T. and Scott R.K. (2000). The physiological response of winter wheat to reduction in plant density. Ann. Appl. Biol., 137: 165-178. 
  122. Xue Q.W., Weiss A., Arkebauer T.J. and Baenziger P.S. (2003). Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environ. Exp. Bot., 51: 167-179 
  123. Zhao X.X., Ma Q.Q., Liang C., Fang Y., Wang Y.Q. and Wang W. (2007). Effect of glycine betaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol. Plant., 51: 584-588.

Global Footprints