Nutritional drivers of rumen development: A review

DOI: 10.18805/ar.v37i2.10740    | Article Id: R-1598 | Page : 148-153
Citation :- Nutritional drivers of rumen development: A review .Agricultural Reviews.2016.(37):148-153

Mokshata Gupta, Nazam Khan*, Ankur Rastogi, Zulfqar ul Haq and T.K. Varun1

drnazamkhan@yahoo.com
Address :

Division of Animal Nutrition, F.V.Sc. and A.H., SKUAST-J, R.S. Pura, Jammu-181 102, India.

Submitted Date : 19-02-2016
Accepted Date : 29-04-2016

Abstract

Proper development of the rumen is an imperative chore that can be controlled to benefit both the calf and producer. The process of rumen development can be enhanced with right nutrition and management that can reduce the cost of raising a calf. Important considerations in regard to nutrition at the time of rumen growth (birth to approximately three months) can lead to faster rumen development and better growth rate of neonatal calves. Additionally, calves with well developed rumen at weaning are less susceptible to diseases and gain more body weight with lower management and labor costs. Therefore present review discusses the different nutritional factors affecting earlier rumen development.

Keywords

Calves Nutritional factors Rumen development.

References

  1. Abecia, L., Martín-García, A.I., Martínez, G., Newbold, C.J., Yáñez-Ruiz, D.R. (2013). Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J. Anim. Sci. 91: 4832–4840. 
  2. Abecia, L., Ramos-Morales, E., Martínez-Fernandez, G., Arco, A., Martín-García, A.I., Newbold, C.J. (2014). Feeding management in early life influences microbial colonization and fermentation in the rumen of new born goat kids. Anim. Prod. Sci. 54: 1449–1454.
  3. Baldwin, R.L. and McLeod, K.R. (2000). Effects of diet forage:concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. J. Anim. Sci. 78: 771–783.
  4. Baldwin, R.L., Vi-McLeod K.R., Klotz, J.L. and Heitmann R.N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. J. Dairy Sci. 87: E55–E65. 
  5. Brulc, J.M., Antonopoulos, D.A., Miller, M.E., Wilson, M.K., Yannarell, A.C., Dinsdale, E.A., Edwards, R.E., Frank, E.D., Emerson, J.B., Wacklin, P., Coutinho, P.M., Henrissat, B., Nelson, K.E. and White, B.A. (2009). Gene-    centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. 106: 1948-1953.
  6. Chiba, L.I. (2014). Digestive Physiology; Animal Nutrition Handbook. Pp: 36-56.
  7. Coverdale, J., Tyler, H., Quigley, J.D. and Brumm, J.A. (2004). Effect of various levels of forage and form of diet on rumen development and growth in calves. J. Dairy Sci. 87: 2554–2562. 
  8. Davis, C.L. and Drackley, J.K. (1998). The Development, Nutrition, and Management of the Young Calf. Ames, IA: Iowa State University Press.
  9. Dehority, B.A. and Orpin, C.G. (1988). Development of and natural fluctuations in rumen microbial populations. In: The Rumen Microbial Ecosystem (Ed.: Hobson, P.N.). Elsevier, London. Pp. 151-183.
  10. Dehority, B.A. (2003). Rumen Microbiology. Nottingham University Press, Nottingham.
  11. Di Giancamillo, A., Bosi G., Arrighi S., Savoini G. and Domeneghini, C. (2003). The influence of different fibrous supplements in the diet on ruminal histology and histometry in veal calves. Histology Histopathology, 18: 727-733. 
  12. Faubladier, C., Julliand, V., Danel, J. and Philippeau, C. (2013). Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products. Br. J. Nutr. 110: 1040–1052. 
  13. Fonty, G., Gouet, P., Jouany, J.P. and Senaud, J. (1987). Establishment of the microflora and anaerobic fungi in the rumen of lambs. J. Gen. Microbiol. 133: 1835–1843.
  14. Fouts, D.E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R.C. and MacNeil, M.D. (2012). Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7:e48289. doi: 10.1371/    journal.pone.0048289
  15. Gabler, M.T., Tozer, P.R. and Heinrichs, A.J. (2000). Development of a cost analysis spreadsheet for calculating the costs to raise a replacement dairy heifer. J. Dairy Sci. 83: 1104-1109. 
  16. Greenwood, R.H., Morrill, J. L., Titgemeyer, E.C., and Kennedy, G.A. (1997). A new method of measuring diet abrasion and its effect on the development of the forestomach. J. Dairy Sci. 80: 2534–2541.
  17. Harmon, D.L., Gross, K.L., Krehbiel, C.R., Kreikemeir, K.K., Bauer, M.L. and Britton, R.A. (1991). Influence of dietary forage and energy intake on metabolism and acyl-CoA synthetase activity in bovine ruminal epithelial tissue. J. Anim. Sci. 69: 4117-4127.
  18. Hart K.J., Yáñez-Ruiz D.R., Duval S.M., McEwan N.R. and Newbold C.J. (2008). Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol. 147: 8-35. 
  19. Heinrichs, A.J. and Lesmeister, K.E. (2005). “Rumen Development in the Dairy Calf.” Calf and Heifer Rearing, Nottingham University Press, Nottingham. Pp. 53-65.
  20. Heinrichs J. (2005). Rumen development in the dairy calf. Adv. Dairy Technol. 17: 179-187.
  21. Jami, E., Israel, A., Kotser, A. and Mizrah, I. (2013). Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7: 1069–1079. 
  22. Jiao J., Li, X., Beauchemin K.A., Tan, Z., Tang, S. and Zhou, C. (2015). Rumen development process in goats as affected by supplemental feeding vs. grazing: age-related anatomic development, functional achievement and microbial colonisation. Br. J. Nutr. 113:888-900. 
  23. Julien, C., Bayourthe, C., Lacroux, C. and Enjalbert. F. (2015). Effects of feeding programs based on one or two milk replacer daily meals on growth, solid feed intake and rumen fermentation and development of dairy calves. Agri. Sci. 6: 1428-1440.
  24. Karney, T.L., Johnson, M.C. and Ray, B. (1986). Changes in the Lactobacilli and Coliform populations in the intestinal tract of calves from birth to weaning. J. Anim. Sci. 63:446-447.
  25. Lane, M.A., Baldwin, R.L. and Jesse, B.W. (2000). Sheep rumen metabolic development in response to age and dietary treatments. J. Anim. Sci. 78: 1990-1996.
  26. Lane, M., Baldwin, R. and Jesse, B. (2002). Developmental changes in ketogenic enzyme gene expression during sheep rumen development. J. Anim. Sci. 80: 1538-1544.
  27. Lesmeister, K.E. and Heinrichs, A.J. (2005). Effects of corn processing on growth characteristics, rumen development and rumen parameters in neonatal dairy calves. J. Dairy Sci. 87: 3439-3450. 
  28. Lesmeister, K.E., Heinrichs, A.J. and Gabler, M.T. (2004). Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics and blood parameters in neonatal dairy calves. J. Dairy Sci. 87: 1832-1839.
  29. Li, R.W., Connor, E.E., Li, C., Baldwin Vi, R.L. and Sparks, M.E. (2012). Characterization of the rumen microbiota of pre-    ruminant calves using metagenomic tools. Environ. Microbiol. 14: 129-139. 
  30. Mackie, R., Sghir, A. and Gaskins, H.R. (1999). Developmental microbial ecology of the neonatal gastrointestinal tract. Anim J. Clin Nutr. 69:1035-1045.
  31. Malmuthuge, N., Li, M., Fries, P., Griebel, P.J. and Guan, L.L. (2012). Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves. Vet. Immunol. Immunopathol. 146: 18-26. 
  32. Martel, C. (2015). Making it pay. Dairy pipeline. 7:1-2. 
  33. McCann, J.C., Wickersham, T.A. and Loor, J. (2014). High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights. 8: 109-125. 
  34. Morvan, B., Doré, J., Rieu-Lesme, F., Foucat, L., Fonty, G. and Gouet, P. (1994). Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol. Lett. 117: 249-256. 
  35. NAHMS. (1996). Dairy herd management practices focusing on preweaned heifers. USDA, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO.
  36. Nemati, M., Amanlou, H., Khorvash, M., Moshiri, M.M., Khan, M.A. and Ghaffari, M.H. (2015). Rumen fermentation, blood metabolites, and growth performance of calves during transition from liquid to solid feed: Effects of dietary level and particle size of alfalfa hay. J. Dairy Sci. 10: 7131–7141.
  37. Quigley, J.D. (1998). Nutritional management of the neonate. Tropical Dairy Seminar. Pp. 11-13.
  38. Rey, M., Enjalbert, F. and Monteils, V. (2012). Establishment of ruminal enzyme activities and fermentation capacity in dairy calves from birth through weaning. J. Dairy Sci. 95: 1500-1512. 
  39. Reynolds, C., Durst, B., Lupoli, B., Humphries, D.J. and Beever D.E. (2004). Visceral tissue mass and rumen volume in dairy cows during the transition from late gestation to early lactation. J. Dairy Sci. 8: 7961-7971. 
  40. Serbester, U., Cakmakci, C., Goncu, S. and Gorgulu, M. (2014). Effect of feeding starter containing butyrate salt on pre- and post-weaning performance of early or normally weaned calves. Rev. Med. Vet. 165: 44-48.
  41. Smith, H.W. (1965). The development of the flora of the alimentary tract in young animals. J. Path. Bact. 90: 495-513.
  42. Stewart, C.S., Fonty, G. and Gouet, P. (1988). The establishment of rumen microbial communities. Anim. Feed Sci. Technol. 21: 69-97. 
  43. Stobo, I.J., Roy, J.H. and Gaston, H.J. (1966). Rumen development in the calf. 2. The effect of diets containing different proportions of concentrates to hay on digestive efficiency. Br. J. Nutr. 20: 189–215. 
  44. Van Soest, P.J. (1994). Function of the ruminant forestomach. Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY. 2: 230-252.
  45. Vidyarthi, V.K. and Kurar, C.K. (2001). Influence of dietary butyrate on growth rate, efficiency of nutrient utilization and cost of unit gain in Murrah buffalo male calves. Asian-Aust. J. Anim Sci. 14: 474 -478.
  46. Waterman, D.F. (2005). Sources of nutrients for milk replacers and dry starter feeds and what factors impact quality. NRAES-175, Cooperative Extension, Pp. 96-115.
  47. Yanez-Ruiz, D.R., Macias, B., Pinloche, E. and Newbold, C.J. (2010). The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. Microbiol. Ecol. 7: 2272-2278. 
  48. Ziegler, D., Chester-Jones, H., Ziegler, B., Larson, R. and Linn, J. (2005). Performance of Holstein heifer calves fed texturized calf starters varying in molasses level. J. Dairy Sci. 88(Suppl.1):175.
  49. Zitnan, R., Voigt, J., Schonhusen, U., Wegner, J., Kokardova, M. and Hagemeister, H. (1998). Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves. Arch. Anim. Nutr. 51: 279–291.
  50. Zitnan, R., Kuhla, S., Sanftleben, P., Bilska, A., Schneider, F., Zupcanova, M. and Voigt, J. (2005). Diet induced ruminal papillae development in neonatal calves not correlating with rumen butyrate. Veterinarni Medicina – Czech, 50: 472-479.
     

Global Footprints