Plant derived smoke stimulation for seed germination and enhancement of crop growth: A review 

DOI: 10.18805/ar.v37i2.10735    | Article Id: R-1584 | Page : 87-100
Citation :- Plant derived smoke stimulation for seed germination andenhancement of crop growth: A review .Agricultural Reviews.2016.(37):87-100

M. Govindaraj, P. Masilamani*, V. Alex Albert and M. Bhaskaran1

masil_mahesh@yahoo.com
Address :

Agricultural Engineering College and Research Institute, T.N.A.U., Kumulur-621 712, Tiruchirappalli, Tamil Nadu, India.

Submitted Date : 7-01-2016
Accepted Date : 30-03-2016

Abstract

Smoke is an important factor involved in fire and post fire germination cues. The role of smoke in stimulating germination was first highlighted in South Africa in a study on Audouinia capitata, a threatened fynbos species. Farmers throughout the world have traditionally used fire and smoke in grain drying practices. It is thought that these methods improve germination and seedling vigor. Smoke has been applied in agriculture mainly by two ways viz., Aerosol method and Smoke water method. In aerosol method, seeds were directly exposed to smoke generated from burning plant material. Smoke-water is one of the most convenient means of application. The biologically active compounds present in smoke readily dissolve in water and when this smoke-extract is used as a diluted solution, treated seeds of many species show a marked improvement in germination. The main active germination compound of smoke-water derived from burned plant materials and cellulose has been identified as butenolide [3-methyl-2H-furo (2, 3-c) pyran-2-one], which is effective at very low concentrations          (1 ppb). The compound has recently been referred to as “karrikinolide”. Following the initial isolation of KAR1, a whole new family of plant growth regulators, termed ‘karrikins’, were identified in smoke and several related compounds have been synthesized.  It is estimated that between 2 and 5 g of KAR1 is more than sufficient for 1 ha of land application rates that are commercially viable. Application of smoke in various agricultural, horticultural forage and forestry crops had found that smoke acted as a cue for breaking seeds of dormancy, improve seed germination, seedling growth, flowering, plant biomass of different plant families, Invitro plantlet regeneration and pathogen control (Anti-microbial properties).

Keywords

Butenolide Germination Plant derived smoke Seedling vigour.

References

  1. Abdollahi, M. R., Mehrshad B. and Moosavi, S. S. (2011). Effect of method of seed treatment with plant derived smoke solutions on germination and seedling growth of milk thistle (Silybum marianum L). Seed Sci Tech. 39: 225-229.
  2. Adkins, S. W. and Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Sci Res. 11: 213-222.
  3. Baldwin, I. T., Staszak-Kozinski, L. and Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata Torr. Ex. Watson. J. Chem. Ecology. 20: 2345-2371.
  4. Baxter, B. J. M. and Van Staden, J. (1994). Plant-derived smoke: an effective seed pre-treatment. Plant Growth Regul. 14: 279-282.
  5. Baxter, B. J. M., Granger, J. E. and Van Staden, J. (1995). Plant-derived smoke and seed germination: is all smoke good smoke? That is the burning question. S Afr J Bot. 61: 275-277.
  6. Blank, R. R. and Young J. A. (1998). Heated substrate and smoke: influence on seed emergence and plant growth. J. Range Manage. 51: 577-583.
  7. Brown, N. A. C. (1993a). Promotion of germination of fynbos seeds by plant-derived smoke. New Phytol. 123: 575-583.
  8. Brown, N. A. C. (1993b). Seed germination in the fynbos fire ephemeral, Syncarpha vestita .L. B-Nord is promoted by smoke, aqueous extracts of smoke and charred wood derived from burning the ericoid-leaved shrub, Passerina vulgaris Thoday. Int J of Wildland Fire. 3: 203-206.
  9. Brown, N. A. C., Van Staden, J., Daws, M. I., Johnson, T. and Van Wyk, A. E. (2003). Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. S Afr J Bot. 69: 514-525.
  10. Brown, N. A. C., Kotze, G. and Botha, P. A. (1993). The promotion of seed germination of Cape Erica species by plant-    derived smoke. Seed Sci Tech. 21: 573-580.
  11. Brown, N. A. C. and Van Staden, J. (1997). Smoke as a germination cue: a review. Plant growth regul. 22: 115-124.
  12. Bryson, C. T., Byrd, J. D. and West brooks, R. G. (1995). Tropical soda apple (Solanum viarum) in the United States. Mississippi State, MS: Department of Agriculture and Commerce, Bureau of Plant Industry Bulletin. 2.
  13. Chiwocha, S. D., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C. and Stevens, J. C. (2009). Karrikins: a new family of plant growth regulators in smoke. Plant Sci. 177: 252-256.
  14. Chumpookam, J., Lin, H. L. and Shiesh, C. C. (2012). Effect of smoke-water on seed germination and seedling growth of papaya (Carica papaya cv. Tainung No. 2). Hort Sci. 47: 741-744.
  15. Cochrane, A., Kelly, A., Brown, K. and Cunneen, S. (2002). Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia. Ecological Management and Restoration, 3: 47-60.
  16. Daws, M. I., Davies, J., Pritchard, H. W., Brown, N. A. and Van Staden, J. (2007). Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 51: 73-82.
  17. De Lange, J. H. and Boucher, C. (1990). Autecological studies on Audouinia capitata .Bruniaceae. I. Plant-derived smoke as a seed germination cue. S Afr J Bot. 56: 700-703.
  18. Demir, I., Light, M. E., Van Staden, J., Kenanoglu, B. B. and Celikkol, T. (2009). Improving seedling growth of unaged and aged aubergine seeds with smoke-derived butenolide. Seed Sci Tech. 37: 255-260.
  19. Dixon, K. W., Roche, S. and Pate, J. S. (1995). The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia. 101: 185-192.
  20. Dixon, K.W., Merritt, D.J., Flematti, G.R. and Ghisalberti, E.L. (2009). Karrikinolide – a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hort. 813: 155-170
  21. Doherty, L. C. and Cohn, M. A. (2000). Seed dormancy in red rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci. Res. 10: 415-421.
  22. Drewes, F. E., Smith, M. T. and Van Staden, J. (1995). The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 16: 205-209.
  23. Duncan, C. A. (2005). Tropical soda apple-Solanum viarum Dunal. Invasive Plants of Range and Wildlands and Their Environmental, Economic, and Societal Impacts. Lawrence, KS: Weed Sci Soc of America. 188-197.
  24. Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. and Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science. 305: 977-977.
  25. lematti, G. R., Goddard-Borger, E. D., Merritt, D. J., Ghisalberti, E. L., Dixon, K. W. and Trengove, R. D. (2007). Preparation of 2 H-furo [2, 3-c] pyran-2-one derivatives and evaluation of their germination-promoting activity. J Agri Food Chem. 55: 2189-2194.
  26. Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. and Trengove, R. D. (2008). Germination stimulant in smoke: Isolation and Identification, In: [S.M. Colegate, R.J. Molyneux (Eds.)], Bioactive Natural Products: Detection, Isolation and Structural Elucidation, CRC Press, Boca Raton. 531–554.
  27. Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. and Trengove, R. D. (2009). Identification of alkyl substituted 2 H-furo [2, 3-c] pyran-2-ones as germination stimulants present in smoke. J Agri Food Chem. 57: 9475-9480.
  28. Gardner, M. J., Dalling, K. J., Light, M. E., Jager, A. K. and Van Staden, J. (2001). Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism? S Afr J Bot. 67: 636-640.
  29. Gehan, H. Amin. (2011). Effect of plant derived smoke water on seed germination and post-germination. Assiut Univ. J. Botany. 40: 43-62.
  30. Ghazanfari, P., Abdollahi, M. R., Moieni, A. and Moosavi, S. S. (2012). Effect of plant-derived smoke extract on in vitro plantlet regeneration from rapeseed (Brassica napus L. cv. Topas) microspore-derived embryos. Int. J. Plant Prod. 6: 309-323.
  31. Ghebrehiwot, H. M., Kulkarni, M. G., Kirkman, K. P. and Van Staden, J. (2008). Smoke Water and a Smoke Isolated Butenolide Improve Germination and Seedling Vigour of Eragrostis tef (Zucc.) Trotter under High Temperature and Low Osmotic Potential. J Agron Crop Sci. 194: 270-277.
  32. Jager, A. K., Light, M. E. and Van Staden, J. (1996). Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environ and Experi Bot. 36: 421-429.
  33. Jain, N. and Van Staden, J. (2007). The potential of the smoke-derived compound 3-methyl-2 H-furo [2, 3-c] pyran-2-one as a priming agent for tomato seeds. Seed Sci Res. 17: 175-181.
  34. Jain, N., Kulkarni, M. G. and van Staden, J. (2006). A butenolide isolated from smoke can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant growth regul. 49: 263-267.
  35. Jefferson, L. V., Pennacchio, M., Havens, K., Forsberg, B., Sollenberger, D. and Ault, J. (2008). Ex situ germination responses of Midwestern USA prairie species to plant-derived smoke. Am. Midl. Nat. 159: 251-256.
  36. Kandari, L. S., Kulkarni, M. G. and Van Staden, J. (2011). Effect of nutrients and smoke solutions on seed germination and seedling growth of tropical soda apple (Solanum viarum). Weed Sci. 59: 470-475.
  37. Keeley, J. E. (1993). Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S Afr J Bot. 59: 638.
  38. Keeley, S. C. and Pizzorno, M. (1986). Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Am J Bot. 1289-1297.
  39. Keeley, J. E. and Fotheringham, C. J. (1997). Trace gas emissions and smoke-induced seed germination. Science. 276: 1248-1250.
  40. Keeley, J. E. and Fotheringham, C. J. (1998). Smoke-induced seed germination in California chaparral. Ecology. 79: 2320-2336.
  41. Kulkarni, M. G., Sparg, S. G., Light, M. E. and Van Staden, J. (2006). Stimulation of Rice (Oryza sativa L.) Seedling Vigour by Smoke water and Butenolide. J Agron Crop Sci. 192: 395-398.
  42. Kulkarni, M. G., Ascough, G. D. and Van Staden, J. (2007). Effects of foliar applications of smoke-water and a smoke-    isolated butenolide on seedling growth of okra and tomato. Hort Sci. 42: 179-182.
  43. Kulkarni, M. G., Ascough, G. D. and Van Staden, J. (2008). Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Hort Tech. 18: 449-454.
  44. Kulkarni, M. G., Light, M. E. and Van Staden, J. (2011). Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S Afr J Bot. 77: 972-979.
  45. Landis, T. D. (2000). Where there’s smoke… There’s Germination? Native Pl J. 1: 25-29.
  46. Le Maitre, D. C. and Midgley, J. J. (1992). Plant reproductive ecology In ‘The Ecology of Fynbos. Nutrients, Fire and Diversity’. 135-174.
  47. Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X. and Ezaki, T. (2004). Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Micr. 54: 819-825.
  48. Light, M. E., Gardner, M. J., Jager, A. K. and Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions. Plant Growth Regul. 37: 135-141.
  49. Light, M. E., Van Staden, J. and Bornman, C. H. (2004). The potential of smoke in seed technology. S Afr J Bot. 70: 97-101.
  50. Light, M. E., Kulkarni, M. G., Ascough, G. D. and Van Staden, J. (2007). Improved flowering of a South African Watsonia with smoke treatments. S Afr J Bot. 73: 298.
  51. Light, M. E., Daws, M. I. and Van Staden, J. (2009). Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot. 75: 1-7.
  52. Lindon, H. L. and Menges, E. (2008). Effects of smoke on seed germination of twenty species of fire-prone habitats in Florida. Castanea, 73: 106-110.
  53. Long, R. L., Williams, K., Griffiths, E. M., Flematti, G. R., Merritt, D. J., Stevens, J. C. and Dixon, K. W. (2010). Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid. Ann Bot. 105: 1063-1070.
  54. Ma, G. H., Bunn, E., Dixon, K. and Flematti, G. (2006). Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2H-furo [2, 3-C] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In vitro cell dev-pl. 42: 305-308.
  55. Mavi, K., Light, M. E., Demir, I., Van Staden, J. and Yasar, F. (2010). Positive effect of smoke-derived butenolide priming on melon seedling emergence and growth. New Zeal J Crop Hort. 38: 147-155.
  56. Mc Govern, R. J., Polston, J. E., and Mullahey, J. J. (1994). Solanum viarum: weed reservoir of plant viruses in Florida. Int J of Pest Manage. 40: 270-273.
  57. Merritt, D.J., Dixon, K.W., Flematti, G., Commander, L.E. and Turner, S.R. (2005). Butenolide- a compound isolated from smoke that promotes seed germination. Abstract of 8th International Workshop on Seeds, Brisbane, Australia. 8–13.
  58. Modi, A.T. (2002). Indigenous storage method enhances seed vigour of traditional maize. S Afr J sci. 98: 138–139.
  59. Muhammad Imran, S.A., Muhammad Jamil, A.K. and Muhammad kamran, N.M.S. (2014). Plant derived smoke -the magical seed sprouter: A view from traditional to recent advancements. Int. J. of chem. & Biol. Sci. 1: 2349–2724.
  60. Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Smith, S.M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63: 107–130.
  61. Pennacchio, M., Jefferson, L. V. and Havens, K. (2007). Where there’s smoke, there’s germination. The Illinois Steward. 16: 24-28.
  62. Pierce, S. M., Esler, K. and Cowling, R. M. (1995). Smoke-induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia. 102: 520-522.
  63. Reyes, O. and Trabaud, L. (2009). Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat. Plant Ecol. 202: 113-121.
  64. Roche, S., Dixon, K. W. and Pate, J. S. (1997). Seed Ageing and Smoke: Partner Cuesin the Amelioration of Seed Dormancyin Selected Australian Native Species. Aust J Bot. 45: 783-815.
  65. Schwachtje, J. and Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Sci Res. 14: 51-60.
  66. Shebitz, D. J., Ewing, K. and Gutierrez, J. (2009). Preliminary observations of using smoke-water to increase low-elevation beargrass Xerophyllum tenax germination. Native pl J. 10: 13-20.
  67. Soengas, P., Hand, P., Vicente, J. G., Pole, J. M. and Pink, D. A. C. (2007). Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet. 114: 637-645.
  68. Sparg, S. G., Kulkarni, M. G., Light, M. E. and Van Staden, J. (2005). Improving seedling vigour of indigenous medicinal plants with smoke. Bioresource Technol. 96: 1323-1330.
  69. Sparg, S. G., Kulkarni, M. G. and Van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Sci. 46: 1336-1340.
  70. Stevens, J. C., Merritt, D. J., Flematti, G. R., Ghisalberti, E. L. and Dixon, K. W. (2007). Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo [2, 3-c] pyran-2-one under laboratory and field conditions. Plant and Soil. 298: 113-124.
  71. Taylor, J. L. S. and Van Staden, J. (1996). Root initiation in Vigna radiata (L.) Wilczek hypocotyl cuttings is stimulated by smoke-derived extracts. Plant Growth Regul. 18: 165-168.
  72. Taylor, J. L. S. and Van Staden, J. (1998). Plant-derived smoke solutions stimulate the growth of Lycopersicon esculentum roots in vitro. Plant Growth Regul. 26: 77-83.
  73. Thomas, P. B., Morris, E. C. and Auld, T. D. (2007). Response surfaces for the combined effects of heat shock and smoke on germination of 16 species forming soil seed banks in south east Australia. Austral Ecology. 32: 605-616.
  74. Thomas, P. B., Morris, E. C. and Auld, T. D. (2003). Interactive effects of heat shock and smoke on germination of nine species forming soil seed banks within the Sydney region. Austral Ecology, 28: 674-683.
  75. Thomas, T. H. and Van Staden, J. (1995). Dormancy break of celery (Apium graveolens L.) seeds by plant derived smoke extract. Plant Growth Regul. 17: 195-198.
  76. Tieu, A., Plummer, J. A., Dixon, K. A., Sivasithamparam, K. and Sieler, I. M. (1999). Germination of four species of native Western Australian plants using plant-derived smoke. Aust J Bot. 47: 207-219.
  77. Van Staden J., Drewes, F. E. and Jager, A. K. (1995). The search for germination stimulants in plant-derived smoke extracts. S Afr J Bot. 61: 260–263.
  78. Van Staden, J. V., Brown, N. A., Jager, A. K. and Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biol. 15: 167-178.
  79. Van Staden, J., Jager, A. K., Light, M. E., Burger, B. V., Brown, N. A. C. and Thomas, T. H. (2004). Isolation of the major germination cue from plant-derived smoke. S Afr J Bot. 70: 654-659.
  80. Van Staden, J., Sparg, S. G., Kulkarni, M. G. and Light, M. E. (2006). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one and its potential as a preconditioning agent. Field Crops Res. 98: 98-105.
  81. Yin, Y.N., Chen, Y.F., Li, S.M. and Guo, J.H. (2005). RAPD analysis of plant pathogenic coryneform bacteria. Wei Sheng Wu Xue Bao Microbial Techno. 45: 837–841.
     

Global Footprints