Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 37 issue 2 (june 2016) : 109-116

Role of silicon under water deficit stress in wheat: (Biochemical perspective): A review

Sarang S. Sapre*, Dinesh N. Vakharia1
1<p>College of Agriculture, Junagadh Agricultural University,&nbsp;Amreli-365 601, Gujarat, India.</p>
Cite article:- Sapre* S. Sarang, Vakharia1 N. Dinesh (2016). Role of silicon under water deficit stress in wheat:(Biochemical perspective): A review . Agricultural Reviews. 37(2): 109-116. doi: 10.18805/ar.v37i2.10736.

Silicon’s role in mediating resistance against various stresses has been a matter of focus in the past decade. Poaeceae family plants are known as high accumulators of silicon. Wheat shows rapid absorption, the optimum accumulation of silicon occurring at around 20 days. Silicon plays a role as a mechanical and a physiological barrier. It also alters the levels of osmolytes and antioxidant enzymes which are a first line of defense in the water deficit stress; also reducing the levels of oxidative stress factors such as hydrogen peroxide. But the results vary with respect to the modes of stress application and its duration. Nowadays, foliar mode of silicon application is carried out compared to the traditional soil application yielding some promising results. Further studies are needed to confirm the mechanisms governing protection which can be done with the comparison of the transcriptome analysis of the stressed plants and also microscopic studies revealing the site of deposition.


  1. Ahmad, F., Rahmatullah., Aziz, T., Maqsood, M. A., Tahir, M. A. and Kanwal, S. (2007). Effect of silicon application on wheat growth under water deficiency stress. Emir. J. Food. Agric., 19: 1-7.

  2. Ahmad, S. T. and Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J. Genet. Plant., 47: 17-27.

  3. Ahmed, M., Asif, M. and Hassan, F. (2014). Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol. Plant., 36: 473-483.

  4. Ali, A., Tahir, M., Amin, M., Basra, S. M. A., Maqbool, M. and Lee, D. J. (2013). Silicon induced stress tolerance in wheat hydroponically grown under water deficit conditions. Bulg. J. Agric. Sci., 19: 951-957.

  5. Bukhari, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A. and Hameed, M. (2015). Improving drought tolerance potential in wheat through exogenous silicon supply. Pak.J. Bot., 47: 1641-1648.

  6. Chen, W., Yao, X., Cai, K. and Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace. Elem. Res., 142: 67-76.

  7. Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P. and Lima, G. P. P. (2009). Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci., 49: 949-954.

  8. Currie, H. A. and Perry, C. C. (2007). Silica in plants: Biological, biochemical and chemical studies. Ann. Bot., 100: 1383-1389.

  9. Datnoff, L. E., Synder, G. H. and Korndorfer, G. H. (2001). Silicon in agriculture, Book series studies in plant science, vol.8. Elseveir, Amsterdam, The Netherlands.

  10. Deepak, S., Manjunath, G., Manjula, S., Raj, S., Geetha, P. and Shetty, H.S. (2008). Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline- rich glycoproteins. Australas. Plant. Path., 37: 498-504.

  11. Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P. and Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant. Nutr., 31: 355-365.

  12. Epstein, E. (1965). In: Plant Biochemistry, [Bonner, J., Varner, J. E., Eds.], Academic Press, N.Y., pp. 1054: 438-66. 

  13. Epstein, E. (1994). The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA., 91:11-17.

  14. Epstein, E. (1999). Silicon. Annu Rev Plant Physiol Plant Mol Biol., 50: 641-664.

  15. Epstein, E. and Bloom, A. J. (2005). Mineral Nutrition of Plants: Principles and Perspectives, 2nd edition, Sinauer, Sunderland, MA.

  16. Gao, X.; Zou, C.; Wang, L. and Zhang, F. (2005). Silicon improves water use efficiency in maize plants. J. Plant. Nutr., 27: 1457-1470.

  17. Gao, X.; Zou, C.; Wang, L. and Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant. Nutr., 29: 1637-1647. 

  18. Gharineh, M. H. and Karmollachaab, A. (2013). Effect of silicon on physiological characteristics in wheat growth under water-deficit stress induced by PEG. Intl. J. Agron. Plant. Prod., 4: 1543-1548.

  19. Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M. and Zhang, C. L. (2003). Effects of silicon on growth of wheat under drought. J. Plant. Nutr., 26: 1055-1063.

  20. Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169: 313-321.

  21. Gong, H. J., Chen, K. M., Zhao, Z. G., Chen, G. C. and Zhou, W. J. (2008). Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plantarum., 52: 592-596.

  22. Gong, H. and Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta. Physiol. Plant., 34: 1589-1594.

  23. Gunes, A., Pilbeam, D. J., Inal, A. and Coban, S. (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms and lipid peroxidation. Commun. Soil. Sci. Plant. Anal., 39: 1885-1903.

  24. Gunes, A., Pilbeam, D. J., Inal, A., Bagci, E. G. and Coban, S. (2007). Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea cultivars under drought stress. J. Plant. Interact., 2: 105-113.

  25. Guntzer, F., Keller, C. and Meunier, J. (2012). Benefits of plant silicon for crops: A review. Agron. Sustain. Dev., 32: 201-213.

  26. Habibi, G. and Hajiboland, R. (2013). Alleviation of drought stress by silicon supplementation in pistachio plants. Folia. Hort., 25:21-29.

  27. Hameed, A., Sheikh, M. A., Jamil, A. and Basra, S. M. A. (2013). Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pakistan Journal of Life and Social Sciences. 11: 19-24.

  28. Hamid, N.; Naz, B. and Rehman, A. (2012). Effect of exogenous application of silicon with drought stress on protein and carbohydrate contents of edible beans. Pakistan J. Chem., 2: 99-105.

  29. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M. and Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant., 123: 459-466.

  30. Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A. E. and Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot., 60: 177-182.

  31. Hodson, M. J., White, P. J., Mead, A. and Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Ann. Bot., 96: 1027-1046.

  32. Knight , C. T. G. and Kinrade, S. D. (2001). A primer on the aqueous chemistry of silicon, In: Silicon in Agriculture, [Datnoff, L. E., Snyder, G. H., Korndorfer, G. H. (Eds.)]. Elsevier, Amsterdam, pp. 57-84.

  33. Lewin, J. and Reimann, B. E. F. (1968). Silicon and plant growth. Annu. Rev. Plant. Physiol., 20: 289- 304.

  34. Liang, Y., Sun, W., Zhu, Y. and Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut., 147: 422-427.

  35. Lobato, A.K.S., Coimbra, G. K., Neto, M. A. M., Costa, R. C. L., Santos Filho, B. G., Oliveira Neto, C. F., Luz, L. M., Barreto, A. G. T., Pereira, B. W. F., Alves, G. A. R., Monteiro, B. S. and Marochio, C. A. (2009). Protective action of silicon on relations and photosynthetic pigments in pepper plants induced to water deficit. Res. J. Biol. Sci., 4: 617-623.

  36. Ma, J. F., Miyake, Y. and Takahashi, E. (2001). Silicon as a beneficial element for crop plants, In: Silicon in Agriculture, [Datnoff, L. E., Snyder, G. H., Korndorfer, G. H. (Eds.)]. Elsevier, Amsterdam. pp. 17-39.

  37. Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant. Nutr., 50: 11-18.

  38. Ma, J. F. and Yamaji, N. (2008). Functions and transport of silicon in plants. Cell. Mol. Life Sci., 65: 3049-3057.

  39. Ma, J. F. and Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends Plant Sci., 20: 435-442.

  40. Maghsoudi, K., Emam, Y. and Ashraf, M. (2015). Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments and growth in water stressed wheat cultivars differing in drought tolerance. Turk. J. Bot., 39: 625-634.

  41. Marafon, A. C. and Endres, L., (2013). Silicon: fertilization and nutrition in higher plants. Amazonian journal of Agricultural and Environmental Sciences. 56: 380-388.

  42. Mecfel, J., Hinke, S., Goedel, W. A., Marx, G., Fehlhaber, R., Baucker, E. and Wienhaus, O. (2007). Effect of silicon fertilizers on silicon accumulation in wheat. J. Plant. Nutr. Soil. Sci., 170: 769-772.

  43. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S. and Rao, A. S. (2014). A case of silicon fertilization to improve crop yields in tropical soil. Proc. Nat. Acad. Sci. India Section B: Biological sciences., 84: 505-518. 

  44. Melo, S. P., Korndorfer, G. H., Korndorfer, C. M., Lana, R. M. Q. and Santana, D. G. (2003). Silicon accumulation and water deficit tolerance in Brachiaria grasses. Sci. Agric., 7: 755-759. 

  45. Ming, D. F., Pei, Z. F., Naeem, M. S., Gong, H. J. and Zhou, W. J. (2012). Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop. Sci., 198: 14-26.

  46. Moldes, C. A., Filho, O. F. L., Camina, J. S., Kiriachek, S. G., Molas, M. L. and Tsai, S. M. (2013). Assessment of the effect of silicon on antioxidative enzymes in cotton plants by multivariate analysis. J. Agric. Food. Chem., 61: 11243-11249.

  47. Nolla, A., Faria, R. J., Korndorfer, G. H. and Silva, T. R. B. (2012). Effect of silicon on drought tolerance of upland rice. J. Food. Agric. Environ., 10: 269-272.

  48. Passala, R., Jain, N., Deokate, P. P., Rao, V. and Minhas, V. S. (2014). Assessment of silixol (OSA) efficacy on wheat physiology: growth and nutrient content under drought conditions. In: 6th international conference on silicon in agriculture. 26-30 August, 2014. Stockholm, Sweden. pp. 138.

  49. Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J. and Zhou, W. J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat seedlings. Plant Growth Regul., 29:106-115.

  50. Pereira, T. S., Lobato, A. K., Tan, D. K. Y., Costa, D. V., Uchoa, E. B., Ferreira, R. N., Pereira, E. D. S., Avila, F. W., Marques, D. J. and Guedes, E. M. S. (2013). Positive interference of silicon on water relations, nitrogen metabolism, and osmotic adjustment of two pepper cultivars under water deficit. Aust. J. Crop. Sci., 7: 1064-1071.

  51. Pilon, C., Soratto, R. P. and Moreno, L. A. (2013). Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop. Sci., 53: 1605-1614.

  52. Pilon, C., Soratto, R. P., Broetto, F. and Fernandes, A. M. (2014). Foliar or soil applications of silicon alleviate water-    deficit stress of potato plants. Agron. J., 106: 2325-2334.

  53. Rafi, M. M., Epstein, E. and Falk, R. H. (1997). Silicon deprivation causes physical abnormalities in wheat. J. Plant. Physiol., 151: 497-501.

  54. Rafi, M. M. and Epstein, E. (1999). Silicon absorption by wheat. Plant soil., 211: 223-230.

  55. Rains, D. W., Epstein, E., Zasoski, R. J. and Aslam, M. (2006). Active silicon uptake by wheat. Plant Soil., 280: 223-228.

  56. Sacala, E. (2009). Role of silicon in plant resistance to water stress. J Elem., 14: 619-630.

  57. Sangster, A. G., Hodson, M. J. and Tubb, H. J. (2001). Silicon deposition in higher plants, In: Silicon in Agriculture, [Datnoff, L. E., Snyder, G. H., Korndorfer, G. H. (Eds.)]. Elsevier, Amsterdam. pp. 85-113.

  58. Sayed, S. A. and Gadallah, M. A. A. (2014). Effects of silicon on Zea mays plants exposed to water and oxygen deficiency. Russ. J. Plant. Physiol., 61: 460-466.

  59. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, E. and Li, J. (2010). Silicon effects on photosynthetic and antioxidant parameters of soyabean seedlings under drought and ultraviolet-B radiation. J. Plant. Physiol., 167: 1248-1252.

  60. Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H. and Gong, H. (2014). Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol. Biochem., 78: 27-36.

  61. Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J. and Gong, H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front. Plant Sci., 7: 1-15.

  62. Silva, O. N., Lobato, A. K. S., Avila, F. W., Costa, R. C. L., Neto, C. F. O., Filho, B. G. S., Filho, A. P. M., Lemos, R. P., Pinho, J. M., Medeiros, M. B. C. L., Cardoso, M. S. and Andrade, I. P. (2012). Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water- deficient tomato cultivars. Plant Soil. Environ., 58: 481-486.

  63. Soratto, R. P., Crusciol, C. A. C., Castro, G. S. A., Costa, C. H. M. and Neto, J. F. (2012). Leaf application of silicic acid to white oat and wheat. R. Bras. Ci. Solo., 36: 1538-1544.

  64. Suzuki,S., Ma, J. F., Yamamoto, N., Hattori, T., Sakamoto, M. and Umezawa, T. (2012). Silicon deficiency promotes lignin accumulation in rice. Plant biotechnol., 29: (391-394).

  65. Toledo, M. Z., Castro, G. S. A., Crusciol, C. A. C., Soratto, R. P., Cavariani, C., Ishizuka, M. S. and Picoli, L. B. (2012). Silicon leaf application and physiological quality of white oat and wheat seeds. Semina: Ciências Agrárias, Londrina., 33: 1693-1702.

  66. Wang, S. Y. and Galleta, G. J. (1998). Foliar application of potassium silicate induces metabolic changes in strawberry plants. J. Plant. Nutr., 21: 157-167.

  67. Zargar, S. M. and Agnihotri, A. (2013). Impact of silicon on various agro-morphological and physiological parameters in maize and revealing its role in enhancing water stress tolerance. Emir. J. Food. Agric., 25: 138-141.

  68. Zhang, C., Jose, M., Pereira, M., Correia, C., Coutinho, J., Goncalves, A., Guedes, A. and Laranjo, J. G. (2013). Foliar application of Sili-K increases chestnut growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant Soil., 365: 211-225.

     

Editorial Board

View all (0)