Current status and future prospects of research on genetically modified rice: A review

DOI: 10.18805/ar.v37i1.9259    | Article Id: R-1546 | Page : 10-18
Citation :- Current status and future prospects of research on geneticallymodified rice: A review .Agricultural Reviews.2016.(37):10-18

Suvendhu S. Dutta*,  Shantanu Das1, Gratify Pale2, Banshanlang Iangrai2, C. Aochen2, Mayank Rai and A. Pattanayak3
Address :

School of Crop Improvement, CPGS, CAU, Barapani-793 103, Meghalaya, India.

Submitted Date : 18-06-2015
Accepted Date : 16-02-2016


Genetically modified crops are the most auspicious development of scientists of today. Rice being the staple food crop globally, it is needed to give immense importance for its improvement. Development of rice varieties tolerant to pests and diseases will ensure safety to farmers against the harmful effects of chemicals used as insecticides and fungicides. Certain abiotic factors like drought, cold, heat, salinity, which hinders the growth of rice can be battled by developing GM rice carrying genes that impact tolerance to these factors. Moreover, increased production and utilization of golden rice would provide the required nutrients especially for the poor to meet their nutritional requirements. But commercialization of GM crops is still an issue as people are yet to accept them globally. Finally, the future prospect of GM rice will flourish unless it is met by some loop holes.


Abiotic Bio-fortification Cry Resistance Transgenic.


  1. Acquaah, G. (2007). Principles of Plant Genetics and Breeding. Blackwell, Oxford, UK.
  2. Ahmad, A., Maqbool, S.B., Riazuddin, S. and Sticklen, M.B. (2002). Expression of synthetic Cry1Ab and Cry1Ac genes in Basmati rice (Oryza sativa L.) variety 370 via Agrobacterium mediated transformation for the control of the European corn borer (Ostrinianubilalis). In Vitro Cell DevBiol Plant 38: 213-220.
  3. Bakshi, S. and Dewan, D. (2013). Status of transgenic cereal crops: A Review. Cloning &Transgenesis. 3: 1-13. 
  4. Bates, S.L., Cao, J., Zhao, J.Z., Earle, E.D., Roush, R.T. and Shelto, A.M. (2005).Evaluation of a chemically inducible promoter for developing a within-plant refuge for resistance management.J.Econ. Entomol 98:2188-94.
  5. Bates, S.L., Zhao, J.Z., Roush, R.T. and Shelton, A.M. (2005). Insect resistance management in GM crops: Past, present and future. Nat Biotechnol 23: 57-62.
  6. Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, R., Welsch, P. and Potrykus, I. (2002). Golden Rice: Introducing the b-    Carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr. 132:506S–510S
  7. Bhullar, N. K.and Gruissem W. (2013). Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnology Advances: 31: 50–57
  8. Borlaug, N. and Dowsewell, C. (2001).The Unfinished green revolution-The future role of science and technology in feeding the developed world. Paper presented at the Seeds of Opportunity Conference, June 2001. London
  9. Breitler, J.C., Cordero, M.J., Royer, M., Meynard, D., San Segundo, B. and Guiderdoni, E. (2001). The “689/+197 region of the maize protease inhibitor gene directs high level, wound-inducible expression of the Cry1B gene, which protects transgenic rice plants from stem borer attack. Molecular Breeding 7: 259-274. 
  10. Breitler, J.C., Marfà, V., Royer, M., Meynard, D., Vassal, J.M., Vercambre, B., Frutos, R., Messeguer, J., Gabarra, R.and Guiderdoni, E. (2000). Expression of a Bacillus thuringiensis Cry1B synthetic gene protects Mediterranean rice against the striped stem borer. Plant Cell Reports 19: 1195-1202.
  11. Burgos, N.R., Singh, V., Tseng, T.M., Black, H., Young, N.D., Huang, Z., Hyma, K.E., Gealy, D.R. andCaicedo, A.L. (2014).The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiology. 166, pp. 1208–1220, American Society of Plant Biologists.
  12. Callaway, A., Giesman-Cookmeyer, D., Gillock, E.T., Sit, T.L. andLommel, S.A. (2001).The multifunctional capsid proteins of plant RNA viruses.Annu. Rev. Phytopathol. 39: 41 9-460.
  13. Chandra Babu, R., Zhang, J., Blum, A., Hod, T.H.D., Wue, R.and Nguyen, H.T. (2005). HVA1, a LEA gene from barley confers dehydration tolerance. CurrOpinBiotechnol 16:123-132.
  14. Chen, J.Q., Meng, X.P., Zhang, Y., Xia, M. and Wang, X.P. (2008). Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. BiotechnolLett 30: 2191-2198.
  15. Chen, M., Shelton, A. and Ye, G. (2011). Modified Rice in China: from research to commercialization. Annu. Rev. Entomol. 56:81-101.
  16. Coca.M.,Penas, G., Gomez, J., Campo, S., Bortolotti, C., Messeguer, J. and Segundo, B.S. (2006). Enhanced resistance to the rice blast fungus Magnaporthegrisea conferred by expression of a cecropinA gene in transgenic rice. Planta. 223: 392-406.
  17. Cui, M., Zhang, W.J., Zhang, Q., Xu, Z.Q., Zhu, Z.G., Faping, D. and Ray, Wu. (2011). Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant PhysiolBiochem 49: 1384-1391.
  18. Datta, K., Baisakh, N., Thet, K.M., Tu, J. andDatta, S.K. (2002). Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor. Appl. Genet. 106:1 -8.
  19. Deng, C.Y., Song, G.S., Xu, J.W.andZhu, Z. (2003). Increasing accumulation level of foreign protein in transgenic plant through protein targeting. Acta Bot Sin , 45: 1084- 1089.
  20. Dubock, A. (2014). The present status of Golden Rice.Journal of Huazhong Agricultural University.69 33 No.6 Oct. 2014
  21. Fang, J. (2008).The vegetative insecticidal protein genes of Bacillus thuringiensis and expression in transgenic rice.PhDthesis.Zhejiang Univ., Hangzhou, China.86 pp.
  22. Farah, J. (1994). Pesticide policies in developing countries: do they encourage excessive use. World Bank discussion paper Number. 238. Washington D.C.
  23. Ghareyazie, B., Alinia, F., Menguito, C.A., Rubia, L.G., de Palma, M., Liwanag, J., Cohen, E.A., Khush, G.S. and Bennett, J. (1997). Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Molecular Breeding. Volume 3, Issue 5, pp 401-414
  24. Giri, C.C. and Laxmi, G.V. (2000). Production of transgenic rice with agronomically useful genes: an assessment. BiotechnolAdv 18: 653-683.
  25. Gould, F. (1998).Sustainability of transgenic insecticidal cultivars-integrating pest genetics and ecology.Ann. Rev. Entomol. 43:701-26.
  26. Grohmann, L. andMäde, D. (2009). Detection of genetically modified rice: collaborative validation study of a construct-    specific real-time PCR method for detection of transgenic Btrice. European Food Research and Technology Volume 228, Number 3, 497-500, DOI: 10.1007/s00217-008-0964-1
  27. Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. andToriyama, S. (1992).Genetically engineered rice resistance to rice strip virus, an insect-transmitted virus.Proc. Natl. Acad. Sci. USA. 89: 9865-9869.
  28. Hibberd, J.M., Sheehy, J.E. and Langdale, J.A., (2008). Using C4 photosynthesis to increase the yield of rice-rationale and feasibility.Curr.Opin. Plant Biol. 11: 228-231.
  29. Huang, J., Hu, R., Scott, R. and Pray, C., (2005). Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308: 688-690. 
  30. Huet, H., Mahendra, S., Wang, J., Sivamani, E., Ong, C.A., Chen, L., de Kochko, A., Beachy, R.N. andFauquet, C. (1999).Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy.Phytopathol. 89: 1022-1027.
  31. Husnain, T., Jan, A., Maqbool, S.B., Datta, S.K. andRiazuddin, S. (2002).Variability in expression of insecticidal Cry1Ab gene in Indica basmati rice.Euphytica 128: 121-128.
  32. ISAAA Brief 49-2014: Executive Summary. Global Status of Commercialized Biotech/GM Crops: 2014
  33. James, C. (2009). China approves biotech rice and maize in landmark decision. Crop Biotech Update.    kc/cropbiotechupdate/online/default.asp 
  34. Jiao, D., Huang, X., Li, X., Chi, W., Kuang, T., Zhang, Q., Ku, M. and Cho, D. (2002).Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes.Photosynth Res. 72: 85-93. 
  35. Kachroo, A., He, Z., Patkar, R., Zhu, Q., Zhong, J., Li, D., Ronald, P., Lamb, C. andChattoo, B.B. (2003). Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res. 12: 577-586.
  36. Katiyar, A.S., Agarwal, M. and Grover, A. (2003).Heat-tolerant basmati rice engineered by over-expression of hsp101.Plant MolBiol 51: 677-686.
  37. Kavi-Kishore, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P. andSreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance.CurrSci, 88: 424-438.
  38. Khanna, H.K. and Raina, S.K. (2002). Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophagaincertulas) Transgenic Res 11: 411-423. 
  39. Krishnamurthy, K., Balconi, C., Sherwood, J.E. and Giroux, M.J. (2001). Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol. Plant-Microbe Interact. 14: 1255-1260.
  40. Ku, M.S.B., Cho, D., Ranade, U., Hsu, T.P., Li, X., Jiao, D.M., Ehleringer, J., Miyao, M. and Matsuoka, M. (2000). Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes, in: Sheehy, J.E., Mitchell, P.L., Hardy, B. (Eds.), Studies in Plant Science, 7, pp. 193–204.
  41. Li, P., Zheng, A.P., Zhu, J., Tan, F.R.,Wang, L.X. et al. 2009. Btcry4Cc1 gene, encode protein and its application. China Pat. No. CN101,497,658
  42. Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P. and Gatehouse, J.A. (2002). Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Molecular Breeding 9: 231-244.
  43. Lucca, P., Hurrell, R. andPotrykus, I. (2001). Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. TheorAppl Genet 102:392–397, 
  44. Matsuoka, M., Furbank, R.T., Fukayama, H. andMiyao, M., (2001). Molecular engineering of C4 photosynthesis, Annu. Rev. Plant Physiol. 52: 297–314.
  45. Narayanan, N.N., Baisakh, N., Oliva, N.P., VeraCruz, C.M., Gnanamanickam, S.S., Datta, K.andDatta,S.K. (2004). Molecular breeding: marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in indica rice (cv. CO39). Mol. Breed. 14: 61 -71.
  46. OECD, 2004. Consensus document on compositional considerations for new varieties of rice (Oryza sativa): key food and feed nutrients and anti-nutrients. Series on the Safety of Novel Foods and Feeds
  47. Pardo, J.M. (2010). Biotechnology of water and salinity stress tolerance. Curr.Opin. Plant Biol. 21: 185-196.
  48. Pathak, M.D. and Khan, Z.R. (1994).Insect pest of rice.International Rice Research Institute, Manila, Philippines.
  49. Peleg, Z., Apse, M.P. and Blumwald, E. (2011). Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv. Bot. Res. 57: 405-443.
  50. Peleg, Z., Reguera, M., Tumimbang, E., Walia, H. andBlumwald, E. (2011).Cytokinin mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water- stress. Plant Biotechnology Journal 9: 747-758.
  51. Phipps, R.H. and Beever, D.E. (2000). New technology: Issues relating to the use of genetically modified crops. J. Anim. Feed Sci. 9: 543-561
  52. Phipps, R.H. and Park, J.R. (2002). Environmental benefits of genetically modified crops: Global and European perspectives on their ability to reduce pesticide use. Journal of Animal andFeed Sciences, 11, 2002, 1-18
  53. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S. and Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+/    H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. ProcNatlAcadSci USA 99: 8436-8441.
  54. Sage, R.F.and Zhu, X.G. (2011).Exploiting the engine of C4 photosynthesis.J. Exp. Bot.62: 2989-3000.
  55. Sanford, J.C.and Johnston, S.A. (1985).The concept of parasite-derived resistance—deriving resistance genes from the arasite’s own genome.J. Theor.Biol. 11 3: 395-405.
  56. Sasha, M.H., Cohen, M.B., Shu, Q.Y. andAltosaar, I. (2004). Achieving successful deployment of Bt rice. Trends Plant Sci 9: 286-292. 
  57. Sheng, C.F., Wang, H.T., Gao, L.D. and Xuan, J.W. (2003).The current status on large scale occurrence of rice stem borer, their loss estimation and control and protection strategies in China.PlantProt 29: 37-39. 
  58. Shimizu, T., Yoshii, M., Wei, T., Hirochika, H. andOmura, T. (2008). Silencing by RNAi of the gene for Pns1 2, a viroplasm matrix protein of rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol. J. DOI: 1 0.1111 /j.1 467-7652.2008.00366.x.
  59. Shou, H., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J. and Wang, K. (2004). Expression of an active tobacco mitogen-activated protein kinase kinasekinase enhances freezing tolerance in transgenic maize. Proc NatlAcadSci USA 101: 3298-3303.
  60. Shu, Q., Ye, G, Cui, H., Cheng, X., Xiang, Y., Wu, D., Gao, M., Xia, Y., Hu, C., Sardana, R. andAltosaar, I. (2000). Transgenic rice plants with a synthetic Cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Molecular Breeding 6: 433-439.
  61. Sivamani, E., Huet, H., Shen, P., Shen, P., Ong, C.A., de Kochko, A., Fauquet, C. andBeachy, R.N. (1999). Rice plant (Oryza sativa L.) containing rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol. Breed. 5: 177-1 85.
  62. Storozhenko, S., De Brouwer, V., Volckaert, M., Navarrete, O., Blancquaert, D., Zhang, G.F., Lambert, W. and Van Der Straeten, D. (2007).Folate fortification of rice by metabolic engineering.Nat Biotechnol 25:1277-9. Epub 2007 Oct 14.
  63. Sudianto, E., Song, B.K., Neik, T.X., Nestor, E.S., Robert, C.S. andNilda, R.B. (2014). Corrigendum to “Clearûeld rice: Its development, success, and key challenges on a global perspective”. [Crop Prot. 49 (2013) 40e51].Crop Protection 55: 142e144.
  64. Takagi, H., Hiroi, T., Yang, L., Tada, Y, Yuki, Y., Takamura, K., Ishimitsu, R, Kawauchi, H., Kiyono, H. and Takaiwa, F. (2005). A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. ProcNatlAcadSci USA.
  65. Thiery, L, Leprince, A.S., Lefebvre, D., Ghars, M.A., Debarbieux, E., and Arnould, S. (2004). Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J BiolChem 279: 14812-14818.
  66. Tillman, D (1999). Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc. National Academy of Sci. USA. 96: 5995-60
  67. Tu, J.M., Zhang, G., Datta, K., Xu, C., He, Y., Zhang, Q., Khush, G.S. and Datta, S.K. (2000).Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensisdeltaendotoxin. NatBiotechnol 18: 1101-1104. 
  68. Tyagi, H., Rajasubramaniam, S., Rajam, M.V. and Dasgupta, I. (2008).RNAinterference in rice against rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res. 17: 897-904.
  69. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006).Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future.Curr.Opin. Plant Biol. 17: 113-122.
  70. Wakasa, Y., Yasuda, H., Oono, Y., Kawakatsu, T., Hirose, S., Takahashi, H. et al. 2011. Expression of ER quality-control related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J. 65: 675–689.
  71. Wu, G., Cui, H.R., Shu, Q.Y., Ye, G.Y. and Xia, Y.W. (2000). GUS histochemical assay: a rapid way to screen stripped stem borer (Chilosuppressalis) resistant transgenic rice with a Cry1A(b) gene from Bt (Bacillus thuringiensis).J Zhejiang UniAgric Life Sci 26: 141-143, Agric Sin 31: 1-6.
  72. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y. andToriyama, K. (2009).Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter.Plant Cell Reports 28: 21-30.
  73. Yang, H., Li, J.X., Guo, S.D., Chen, X.J .and Fan, Y.L. (1989).Transgenic rice plants produced by direct uptake of d-    endotoxin protein gene from Bacillus thuringenesis into rice protoplasts.Sci. Agric. Sin. 22:1-5. 
  74. Ye, G., Yao, H., Cui, H., Cheng, X., Hu, C., Xia, Y.W., Gao M.W. andAltosaar, I. (2001).Field evaluation of resistance of transgenic rice containing a synthetic Cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol 94: 271-276.
  75. Ye, R.J., Huang, H.Q., Yang,Z., Chen, T.Y., Liu, L., Li, X., Chen, H. and Lin, Y. (2009). Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Manag. Sci. 65:1015-20. 
  76. Zhang, H., Li, G., Li, W. and Song, F. (2009). Transgenic strategies for improving rice disease resistance. African Journal of Biotechnology. 8 (9), pp. 1 750-1 757
  77. Zhang, J.Z., Creelman, R.A. and Zhu, J.K. (2004).From laboratory to ûeld.Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops.PlantPhysiol 135: 615-621.
  78. Zhang, S.W., Li, C.H., Cao, J., Zhang, Y.C., Zhang, S.Q., Xia, Y.F., Sun, D.Y. and Sun, Y. (2009). Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology 151: 1889-1901.
  79. Zheng, X., Chen, B., Lu, G. and Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications 379.

Global Footprints