Aftermath of climate change on insect migration: A review

DOI: 10.18805/ag.v37i3.3537    | Article Id: R-1536 | Page : 221-227
Citation :- Aftermath of climate change on insect migration: A review .Agricultural Reviews.2016.(37):221-227

G.K. Sujayanand*1 and V. Karuppaiah2

sujayanand_agri@yahoo.co.in
Address :

Division of Crop Protection, Indian Institute of Pulses Research, Kanpur-208 024, India.

Submitted Date : 26-05-2015
Accepted Date : 14-07-2016

Abstract

Climate change is inflicting a huge impact in all the corners of biosphere. The insects, one of the early inhabitants of the biosphere are well known for their co-evolution with the plants and adaptation to the diverse environments. The power of flight makes the insect community to occupy new habitats and hence insect migration is one of the predominant areas for investigation in the perspective of climate change. The insect migration is a complex science that involves thorough understanding of insect bio-ecology along with knowledge of meteorology, aerodynamics, remote sensing and climatology. The various abiotic parameters that influence the insect migration and the effects of these parameters under the changing climatic scenario are discussed in this paper.

Keywords

Climate change Insect migration.

References

  1. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D. and Whittaker, J.B. (2002). Herbivory in global climate change research: direct effect of rising temperature on insect herbivores. Global Change Biology. 8: 1–16. 
  2. Bharati, S. M., Gundannavar, K.P., Giiraddi, R.S., Hilli, J.S., Kamanna, B.C. and Budhihal, R.A. (2007). Mango – A new record for Helicoverpa armigera (Hubner). Current Science. 92:1033.
  3. Bi, X. L., Xu, Y.X. and Hong, W. (2003). Relationship between the occurrence of Dendrolimus punctatus in Fujian and the ENSO events. Journal of Fujian College of Forestry. 23: 44 –47.
  4. Braschler, B. and Hill, J.K. (2007). Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. Journal of Animal Ecology. 76: 415–423. 
  5. Coviella, C.E. and J.T. Trumble, 1999. Effects of elevated atmospheric carbon dioxide on insect±plant interactions. Conservation Biology. 13: 700-712.
  6. Dennis R.L.H. (1993): Butterflies and Climate Change. Manchester University Press, Manchester. 302 pp.
  7. Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. and Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. PNAS.18: 6668–6672.
  8. Dewar, R.C. and Watt, A.D. (1992). Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia. 89: 557–559.
  9. Drake VA, Farrow, R.A. (1988). The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol. 33:183–210
  10. Ellis, W.N., Donner, J.H. and Kuchlein, J.H. (1997). Recent shift in phenology of Microlepidoptera, related to climatic change (Lepidoptera). Entomologische Berichten, Amsterdam. 57: 66–72.
  11. European Commission. (2006). Information on Regulated Non-Quarantine Pests. HA/svi D(2006), Brussels, 17 February 2006. 
  12. Fitt, G. P. (1989). The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 34: 17–52.
  13. Forister, M.L. and Shapiro, A.M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology. 9: 1130–1135.
  14. Haeger, J.F. (1999). Danaus chrysippus (Linnaeus 1758) en la Penísula Iberica: migraciones o dinámica de metapo­blaciones? – Shilap 27: 423–430.
  15. Harrington, R. (1998). An aphid new to Britain. Entomologist’s Record. 110: 288.
  16. Harrington, R. I. Woiwod, and Sparks, T. (1999). Climate change and trophic interactions, TREE. 14: 146–150.
  17. Harrington, R., Fleming, R.A. and Woiwood, I.P. (2001). Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. Forest Entomol. 3: 233–240.
  18. Hulme, M., Dougherty, R., Ngara, T., New, M. and Lister, D. (2001). African climate change: 1900–2100. In: Desanker P (ed) Africa and global climate change. CR SPECIAL 8. Climate Research. 17:145-168.
  19. Johnson C.J. (1969). In Migration and dispersal of insects by flight. Methuen and Company Limited, London
  20. Kennedy, J.S. (1985). Migration, behavioural and ecological. In: Rankin, M.A. (ed.) Migration: Mechanisms and adaptive Significance. Contributions in Marine Science Suppl., Vol. 27, Marine Science Institute, University of Texas, Port Arkansas, Texas, pp. 7-26.
  21. Kinney, K.K., Lindroth, R.L., Jung, S.M. and Nordheim, E.V. (1997). Effect of Co2 and No3 availability on deciduous tree: phytochemistry and insect performance. Ecology. 78: 215-230.
  22. Meehl G., Stocker, T., Collins, W., Friedlingstein, P., Gaye, A., Solomon, S., Qin, D., Manning, M., Chen, Z. and Marquis, M. (2007). Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  23. Musolin, D.L. (2007). Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology. 13: 1565–1585.
  24. Palmqvist, G. (2001). Intressanta fynd av storfjarilar (Macrolepidoptera) i Sverige 2000. [Remarkable records of Macrolepidoptera in Sweden 2000.] Entomologisk Tidskrift. 122 : 41-55.
  25. Palmqvist, G. (2002). Intressanta fynd av storfjarilar (Macrolepidoptera) i Sverige 2001. [Remarkable records of Macrolepidoptera in Sweden 2001.] Entomologisk Tidskrift. 123: 53-63.
  26. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics. 37: 637-669.
  27. Porter, J.H., Parry, M.L. and Carter, T.R. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology. 57: 221-240.
  28. Porter, K. (1992). Eggs and egg-laying. In: Dennis, R.L.H. (Ed). 1992. The Ecology of Butterflies in Britain. Oxford University Press. Oxford. pp 46-72.
  29. Qin, S.L., Zhai, B.P., Zhang, X.X., Zhao, Z.G., Jiang, Y.Y., Qu, X.F. (2003). Using advance ENSO indices to forecast outbreaks of Helicoverpa armigera. Acta Ecologica Sinica. 23: 1695–1711.
  30. Rainey, R.C. (1977). Rainfall: scarce resource in «opportunity country». Phil. Trans. R. Soc. (B), 278 : 439-455.
  31. Ravelo, A.C., Grilli, M. and Santa, J.A. (2001). Monitoreo del picudo del algodonero mediante utilización de información satelital y terrestre. In: Proceedings of the «Cotton in the Southern Cone – Project on Integrated Pest Management of the Cotton Boll Weevil in Argentina, Brazil and Paraguay CFC/ICAC/04», PART 1, 26-28 June 2001, Fortaleza, Brazil, pp. 215-224.
  32. Riley, J.R., Reynolds, D.R., Mukhopadhyay, S., Ghosh, M.R., Sarkar, T.K. (1995). Longdistance migration of aphids and other small insects in northeast India. Eur. J. Entomol. 92:639–53
  33. Riley, J.R., Armes, N.J., Reynolds, D.R. and Smith, A.D. (1992). Nocturnal observations on the emergence and flight behaviour of Helicoverpa armigera (Lepidoptera: Noctuidae) in the post-rainy season in central India. Bull. Entomol. Res. 82: 243–256.
  34. Roth, S.K. and Lindroth, R.L. (1994). Effect of Co2 mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia. 98: 133-138.
  35. Roth, S.K. and Lindroth, R.L. (1995). Elevated atmospheric Co2: effects on phytochemistry, insect performance and insect-    parasitoid interaction. Global Change Biol. 1:173-182.
  36. Roy D.B. and Sparks, T.H. (2000): Phenology of British butterflies and climate change. Global Change Biology. 6: 407-    416.
  37. Rubenstein, D.I. (1992). The green house effect and changes in animal behaviour:Effects on social structure and life history strategies. Yale University. 180-192 pp.
  38. Sparks T.H., Dennis, R.L.H., Croxton, P.J. and Cade, M. (2007): Increased migration of Lepidoptera linked to climate change. Eur. J. Entomol. 104: 139–143.
  39. Sparks T.H., Roy, D.B. and Dennis, R.L.H. (2005). The influence of temperature on migration of Lepidoptera into Britain. Global Change Biology. 11: 507–514. 
  40. Srygley, R.B., Dudley, R., Oliveira, E.G., Aizprua, R., Pelaez, N.Z. and Riveros, A.J. (2009). El Niño and dry season rainfall influence host plant phenology and an annual butterfly migration from Neotropical wet to dry forests. Global Change Biology. 16: 936-945.
  41. Srygley, R.B. and Dudley, R. (2011). Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences. Integrative and Comparative Biology. 48:119–133.
  42. Stefanescu, C., Penuelas, J. and Filella, I. (2003). Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global change biology. 9: 1494-1506.
  43. Torres-Vila, L. M., Rodr´ýguez-Molina, M.C., Lacasa-Plasencia, A. and Bielza-Lino, P. (2002). Insecticide resistance of Helicoverpa armigera to endosulfan, carbamates and organophosphates: The Spanish case. Crop Protection. 21: 1003–1013.
  44. Tougou, D., Musolin, D.L. and Fujisaki, K. (2009). Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomologia Experimentalis et Applicata. 130: 249–    258. DOI: 10.1111/j.1570-7458.2008.00818.x
  45. Vaishampayan, Jr.S. and Singh, H.N. (1996). Evidences on the migratory nature of Heliothis armigera (Hubner) adults collected on light trap at Varanasi. Indian J. Entomol. 57: 224– 232.
  46. Warren M.S., Pollard E. and Bibby T.J. (1986). Annual and long term changes in a population of the wood white butterfly Leptidea sinapis. J. Anim. Ecol. 55: 707–720.
  47. Williams, C.B. (1957). Insect migration. Annu. Rev. Entomol., 2: 163-180.
  48. Xu, G., Guo, Y.Y. and Wu, K.M. (1999). Analyses of pollens adhering to cotton bollworm moths (Lepidoptera: Noctuidae). Sci. Agric. Sinica. 32: 63-68.
  49. Yamamura, K. and Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology. 33: 289-298.
  50. Zhang, Z.B. and Li, D.M. (1999). A possible relationship between outbreaks of the oriental migratory locust (Locusta migratoria manilensis Meyen) in China and the El Nino episodes. Ecological Research. 14: 267-270.
  51. Zheng, S.Q. and Liang, J.Y. (1998). Analysis on the impact of El Nino on outbreak of rice planthopper in Guangdong Province. Plant Protection Technology and Extension. 18: 3-4.
  52. Zhu, M., Hu, G.W. and Tang, J. (1997). Effect of globe climate abnormality (ENSO phenomena occurrence) on outbreak of rice brown planthopper in China. Scientia Agricultura Sinica. 30:1-5.

Global Footprints