Agricultural Reviews
Chief EditorPradeep K. Sharma
Print ISSN 0253-1496
Online ISSN 0976-0741
NAAS Rating 4.84
Chief EditorPradeep K. Sharma
Print ISSN 0253-1496
Online ISSN 0976-0741
NAAS Rating 4.84
Minor millets as model system to study C4 photosynthesis - A review
Submitted20-02-2015|
Accepted18-08-2015|
First Online 29-12-2015|
C4 photosynthesis is the primary mode of carbon capture and drives productivity in several major food crops and bio-energy grasses. Gains in productivity associated with C4 photosynthesis include improved water and nitrogen use efficiencies. Within grasses rice and brachypodium are used as model species. Since these two crops are using C3 photosynthesis for their growth and development, it cannot be used as model for to study C4 photosynthesis. In order to characterize the evolutionary innovations and to provide genomic insight into crop improvement for the many important crop species, a new genomic and genetic model species is required. Minor millets have small diploid genomes, shorter life cycles, self pollination and prolific seed production. Due to these characteristics it gains importance over major C4 species which lack all of these traits. Within Minor millets, Setaria italica and Setaria viridis are used as model systems since these crops fulfils all the traits responsible to be a model species. Importantly, Setaria species uses NADP-Malic enzyme subtype C4 photosynthetic system to fix carbon and therefore is a potential powerful model system for dissecting C4 photosynthesis. C4 grasses have a shorter distance between longitudinal veins in the leaves than C3 grasses. The C4 grasses have denser transverse and small longitudinal veins than the C3 grasses. It indicates that C4 grasses have a structurally superior photosynthate translocation and water distribution system by developing denser networks of small longitudinal and transverse veins. Setaria has high vein density and kranz anatomy that helps to concentrate CO2 in the bundle sheath cells. This minimizes photorespiration thereby prevents the loss of energy.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.