Minor millets as model system to study C4 photosynthesis - A review

DOI: 10.18805/ag.v36i4.6666    | Article Id: R-1506 | Page : 296-304
Citation :- Minor millets as model system to study C4 photosynthesis - A review .Agricultural Reviews.2015.(36):296-304

P. Vivitha and D. Vijayalakshmi*

vijiphysiology@gmail.com
Address :

Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore-641 003, India.

Submitted Date : 20-02-2015
Accepted Date : 18-08-2015

Abstract

C4 photosynthesis is the primary mode of carbon capture and drives productivity in several major food crops and bio-energy grasses. Gains in productivity associated with C4 photosynthesis include improved water and nitrogen use efficiencies. Within grasses rice and brachypodium are used as model species. Since these two crops are using C3 photosynthesis for their growth and development, it cannot be used as model for to study C4 photosynthesis. In order to characterize the evolutionary innovations and to provide genomic insight into crop improvement for the many important crop species, a new genomic and genetic model species is required. Minor millets have small diploid genomes, shorter life cycles, self pollination and prolific seed production. Due to these characteristics it gains importance over major C4 species which lack all of these traits. Within Minor millets, Setaria italica and Setaria viridis are used as model systems since these crops fulfils all the traits responsible to be a model species. Importantly, Setaria species uses NADP-Malic enzyme subtype C4 photosynthetic system to fix carbon and therefore is a potential powerful model system for dissecting C4 photosynthesis. C4 grasses have a shorter distance between longitudinal veins in the leaves than C3 grasses. The C4 grasses have denser transverse and small longitudinal veins than the C3 grasses. It indicates that C4 grasses have a structurally superior photosynthate translocation and water distribution system by developing denser networks of small longitudinal and transverse veins. Setaria has high vein density and kranz anatomy that helps to concentrate CO2 in the bundle sheath cells. This minimizes photorespiration thereby prevents the loss of energy.

Keywords

C4 photosynthesis Minor millets Setaria italica Setaria viridis.

References

  1. Altus, D. P. and Canny M. J. (1982). Loading of assimilates in wheat leaves. I. The specialization of vein types for separate activities. Aust. J. Plant Physiol. 9: 571–581.
  2. Anten, N. P. R., Schieving, F. and Werger, M. J. A. (1995). Patterns of light and nitrogen distribution in relation to whole canopy gain in C3 and C4 mono-and dicotyledonous species. Oecologia 101: 504-513.
  3. Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., Estep, M., Feng, L., Vaughn, J. N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S., Wang, X., Wu, X., Mitros, T., Triplett, J., Yang, X., Ye, C. Y., Mauro-Herrera, M.,Wang, L., Li, P., Sharma, M., Sharma, R., Ronald, P. C., Panaud,O., Kellogg, E. A., Brutnell, T. P., Doust, A. N., Tuskan, G. A., Rokhsar, D., Devos, K. M. (2012). Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30: 555-561.
  4. Brown, N. J., Parsley, K., and Hibberd, J. M. (2005). The future of C4 research–Maize, Flaveria or Cleome? Trends Plant Sci. 10: 215–221. 
  5. Brutnell, T. P., Wang, L., Swartwood, K., Goldschmidt, A., Jackson, D., Zhu, X. G., Kellogg, E., Van Eck, J. (2010). Setaria viridis: a model for C4 photosynthesis. Plant Cell 22: 2537–2544
  6. Chaves, M., Maroco, J. and Pereira, J. (2003). Understanding plant responses to drought - from genes to the whole plant. Funct. Plant Biol. 30: 239–264.
  7. Christin, P. A., Petitpierre, B., Salamin, N., Buchi, L. and Besnard, G. (2009a). Evolution of C phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol. Biol. Evol. 26: 357–365.
  8. Christin, P. A., Salamin, N., Kellogg, E.A., Vicentini, A. and Besnard, G. (2009b). Integrating phylogeny into studies of C4 variation in the grasses. Plant Physiol. 149: 82–87.
  9. Christin, P.A., Samaritani, E., Petitpierre, B., Salamin, N. and Besnard, G. (2009c). Evolutionary insights on C4 photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol. Evol. 1: 221–230.
  10. Dai, H. P., Zhang, P. P., Lu, C., Jia, G. L., Song, H., Ren, X. M., Chen, J., Wei, A. Z., Feng, B. L., Zhang, S. Q. (2011b). Leaf senescence and reactive oxygen speciesmetabolism of broomcorn millet (Panicum miliaceum L.) under drought condition. Australian Journal of Crop Sci. 5:1655-1660.
  11. Dengler, N.G., Dengler, R. E., Donnelly, P.M. and Hattersley, P. W. (1994). Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann. Bot. 73: 241–255.
  12. Dengler NG, Nelson T. (1999). Leaf structure and development in C4 plants. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego: Academic Press, 133–172.
  13. Diao, X., Li, W., Zhi, H., Jia, G., Ge, Y., Chai, Y. and Li, J. (2014). Construction of an EMS mutation library for foxtail millet functional genomics. The first international Setaria genetics conference abstracts, Beijing, 56
  14. Diao, X. (2005). Advances in foxtail millet biotechnology and its future directions. J. Hebei Agricul. Sci. 9: 61–68.
  15. Diao, X. (2007). Foxtail millet production in China and its future development tendency. In: Chai, Y. Wan, F. S, eds. The industrial development of China special crops. Beijing. Chinese Agricultural Science and Technology Press, 32–43.
  16. Doust, A. N., Kellogg, E. A., Devos, K.M. and Bennetzen, J. L. (2009). Foxtail millet: a sequence-driven grass model system. Plant Physiol. 149: 137–141
  17. Edwards, E. J. and Smith, S. A. (2010). Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Nat. Acad. Sci. USA 107: 2532–2537.
  18. Foyer, C. H. and Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ, 28:1056–1071.
  19. Hatch, M. D. (1971). The C4-pathway of photosynthesis: Evidence for an intermediate pool of carbon dioxide of the donor C4-dicarboxylic acid. Biochemistry 125: 425–432.
  20. Hatch, M. D. (1987). C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta. 895: 81–106.
  21. Hikosaka, K. (2004). Interspecific difference in the photosynthesis_nitrogen relationship: patterns, physiological causes, and ecological importance. J. Plant Res. 117: 481- 494.
  22. Jia, G., Huang, X., Zhi, H., Zhao ,Y., Zhao, Q., Li, W., Chai, Y., Yang, L., Liu, K., Lu, H., Zhu, C., Lu, Y., Zhou, C., Fan, D., Weng, Q., Guo, Y., Huang, T., Zhang, L., Lu, T., Feng, Q., Hao, H., Liu, H., Lu, P., Zhang, N., Li, Y., Guo, E., Wang, S.,Wang, S., Liu, J., Zhang, W., Chen, G., Zhang, B., Li, W., Wang, Y., Li, H., Zhao, B., Li, J., Diao, X. and Han, B. (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics 45: 957– 961
  23. Jia, G., Shi, S., Wang, C., Niu, Z., Chai, Y., Zhi, H. and Diao, X. (2013). Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. J. Exp. Bot. 64: 3645–3656
  24. Leegood, R. C. (2002). C4 photosynthesis: principles of CO2concentration and prospects for its introduction into C(3) plants. J. Exp. Bot. 53: 581–590
  25. Li, P. and Brutnell, T. P. (2011). Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J. Exp. Bot. 62: 3031–3037
  26. Li, P., Ponnala, L., Gandotra, N. et al., (2010). The developmental dynamics of the maize leaf transcriptome. Nature Genet. 42: 1060–1067.
  27. Long, S.P., Zhu, X.G., Naidu, S.L, Ort, D.R. and Usda, A. R. S. (2006). Can improvement in photosynthesis increase crop yields? Plant Cell. Environ. 29: 315- 330.
  28. Martins, P. K., Dias, B. B. A., Ribeiro, A. P., Kobayashi, A. K., Molinari, H. B. C. (2014). Setaria viridis: a tool for functional gene analysis in sugancane. The first international Setaria genetics conference abstracts, Beijing, 19
  29. Mitchell, P. L. and Sheehy, J. E. (2007). The case for C4 rice. In Charting New Pathways to C4 Rice, J.E. Sheehy, P.L. Mitchell, and B. Hardy, eds (Los Banos, Philippines: International Rice Research Institute), pp. 27–36.
  30. Ohsugi, R. and Murata, T. (1986). Variations in the leaf anatomy among some C4 Panicum species. Ann. Bot. 58: 443–453.
  31. Paterson, A.H., Bowers, J. E. and Bruggmann, R. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457 : 551–556.
  32. Rizal, G., Karki, S. and Thakur, V. (2012). “Towards a C4 rice,” Asian J. Cell Biol. 7: 13–31
  33. Rominger, J. M. (1962). Taxonomy of Setaria (Gramineae) in North America. In: Illinois Biol Monogr, volume 29. Edited by Horsfall WR, Delevoryas T, De Moss RD, Kruidenier FJ, and Taylor AB. Urbana: University of Illinois Press; 100–108
  34. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytol. 161: 341–370
  35. Sage, R.F. and Pearcy, R.W. (2000). The physiological ecology of C4 photosynthesis. In Photosynthesis: Physiology and Metabolism, T.D. Sharkey and S. von Caemmerer, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 497–532.
  36. Schnable, P.S., Ware, D., Fulton, R. S. et al., (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.
  37. Shangguan, Z. P., Shao, M. A. and Dyckmans, J. (2000). Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ. Exp. Bot. 44: 141- 149.
  38. Sigaud-Kutner, T. C. S., Pinto, E., Okamoto, O. K., Latorre, L. R. and Colepicolo, P. (2002). Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol. Plant. 114:566–571.
  39. Turkan, I., Bor, M., Ozdemir, F. and Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray andmdrought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168: 223–231.
  40. Wang, C. F., Jia, G. Q., Zhi, H., Niu, Z. G., Chai, Y., Li, W., Wang, Y. F., Li, H. Q., Lu, P., Zhao, B. H. and Diao, X. M. (2012). Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] land races. G3 (Bethesda), 2(7): 769–777.
  41. Wang, K. and Shangguan, Z. (2010). Photosynthetic characteristics and resource utilization efficiency of maize (Zea mays L.) and millet (Setaria italica L.) in a semi-arid hilly loess region in China N. Z. J. Crop Hortic. Sci. 38: 247-254
  42. Wang, L., Li, P. and Brutnell, T. P. (2010b). Exploring plant transcriptomes using ultra high-throughput sequencing. Briefings Funct. Genomics 9: 118–128.
  43. Wang, X., Gowik, U., Tang, H., Bowers, J.E., Westhoff, P. and Paterson, A. H. (2009). Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10: R68.
  44. Wang, K. and Shangguan, Z. (2014). Photosynthetic characteristics and resource utilization efficiency of maize (Zea mays L.) and millet (Setaria italica L.) in a semi-arid hilly loess region in China. N. Z. J. Crop Hortic. Sci. 38(4): 247-254
  45. Yanagisawa, S. and Sheen, J. (1998). Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. The Plant Cell 10: 75–89.
  46. Yoshimura, Y, Kubota F, Ueno O. (2004). Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta 220: 307–317.
  47. Zhang, X. (2007). Drought adaptability of main minor crops in Loess Plateau. J. Arid Land Resources Environ. 21: 111-115.
  48. Zhao, M., Zhi, H., Doust, A. N., Li, W., Wang, Y., Li, H., Jia, G., Wang, Y., Zhang, N. and Diao, X. (2013). Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genomics 14: 244
  49. Zhi, H., Jia, G., Niu, Z., Liu, X., Ge, Y., Chai, Y. and Diao, X. (2014). Construction of an RIL population and segment introgression lines via interspecific cross between Setaria italica and S. viridis. The first international Setaria genetics conference abstracts, Beijing, 50
  50. Zhu, X. G., Shan, L., Wang, Y. and Quick, W. P. (2010). C4 rice - an ideal arena for systems biology research. J. Integrative Plant Biol. 52: 762–770.
  51. Zhu, X. G., Long, S. P. and Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19: 153–159.

Global Footprints