Progress on genetic modifications of pulp wood tree species relevance to India - A review

DOI: 10.18805/ag.v36i4.6663    | Article Id: R-1432 | Page : 265-276
Citation :- Progress on genetic modifications of pulp wood tree speciesrelevance to India - A review .Agricultural Reviews.2015.(36):265-276

Boby Unnikrishnan* and D.S. Gurumurthy

bobyunni@rediffmail.com
Address :

ITC Life Sciences and Technology Centre, Peenya Industrial Area, 1ST Phase, Bangaluru-560 058, India.

Submitted Date : 1-03-2014
Accepted Date : 10-09-2015

Abstract

The major tree species grown for pulp and paper industry in India are eucalypts, poplars, casuarinas, subabul and acacias. There is a growing demand for pulp and paper products with minimum adverse effect on natural forest and environment. Genetic transformation in these pulp woods are aimed at enhancing growth, wood characteristics and stress tolerance. However, genetic transformation of trees is a time consuming process because of long life cycle, recent domestication status and recalcitrance to in vitro procedures. Though various instances of incorporating desired trait by transformations in trees have been reported, the effect of genetically modified trees on surrounding ecosystems need further studies. Efforts towards making transgenic trees should take in to consideration of alleviation of public concerns on pollen dispersal, contamination of wild germplasm and biosafety.

Keywords

Genetic modifications Growth Pulp woods Stress tolerance Wood characteristics.

References

  1. Arumugam, S., Chu, F.H., Wang, S.Y. and Chang, S.T. (2009). In vitro plant regeneration from immature leaflets derived callus of Acacia confusa Merr via organogenesis. J. Plant Biochem. Biot.,18: 197-201. 
  2. Boerjan, W. (2005). Biotechnology and the domestication of forest trees. Curr. Opin. Biotech., 16: 159–166.
  3. Bourquin, V., Nishikubo, N., Abe, H., Brumer, H., Denman, S., Eklund, M., Christiernin, M., Teeri, T.T., Sundberg, B. and Mellerowicz, E.J. (2002). Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell, 14: 3073–3088.
  4. Chen, Z., Chang, S., Ho, C., Chen, Y., Tsai, J. and Chiang, V. (2001). Plant production of transgenic Eucalyptus camaldulensis carrying the Populus tremuloïdes cinnammate 4-hydroxylase gene. Taiwan J. For. Sci., 16: 249–258.
  5. Chiang, V.L., Puumala, R.J., Takeuch, I.H. and Eckert, R.E. (1988). Comparison of softwood and hardwood kraft pulping. Tappi J., 71: 173–176.
  6. Coleman, H.D., Canam, T., Kang, K.Y., Ellis, D.D. and Mansfield, S.D. (2007) Over expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J. Exp. Bot., 58: 4257–4268.
  7. Coleman, H.D., Cánovas, F.M., Man, H., Kirby, E.G. and Mansfield, S.D. (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba). Plant Biotechnol. J., 10:883-9. 
  8. Creissen, G., Broadbent, P., Stevens, R., Wellburn, A. and Mullineaux, P. (1996). Manipulation of glutathione metabolism in transgenic plants. Biochem. Soc. T., 24: 465–469.
  9. Dauwe, R., Morreel, K., Goeminne, G., Gielen, B., Rohde, A., Van Beeumen, J., Ralph, J., Boudet, A.M., Kopka, J., Rochange, S.F., Halpin, C., Messens, E. and Boerjan, W. (2007). Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J., 52: 263–285.
  10. Davis, M.F., Tuskan, G.A., Payne, P., Tschaplinski, T.J. and Meilan, R. (2006). Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiol., 26: 557–564.
  11. Delledonne, M., Allegro, G., Belenghi, B., Balestrazzi, A., Picco, F., Levine, A., Zelasco, S., Calligari, P. and Confalonieri, M. (2001). Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol. Breeding, 7: 35–42.
  12. DiFazio, S.P., Leonardi, S., Cheng, S., and Strauss. S.H. (1999). Assessing potential risks of transgenic escape from fiber plantations. In Gene flow and agriculture: Relevance for transgenic crops. British Crop Protection Council Symposium Proceedings (ed. P.W. Lutman.), 72: 171–76. 
  13. El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F. and Kirby, E.G. (2004). Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol., 24: 729–736.
  14. Eriksson, M.E., Israellsson, M., Olsson,O. and Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promote growth, biomass production and xylem fiber length. Nature Biotechnol, 18:784–788.
  15. Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.J., Pruvost, C. and Jouanin, L. (1995). Over expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photo-inhibition in poplar trees. Plant Physiol., 109: 1047–1057.
  16. Genissel, A., Leple, J.C., Millet, N., Augustin, S., Jouanin, L. and Pilate, G. (2003). High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Mol. Breeding, 11: 103–110.
  17. Giorcelli, A., Sparvoli, F., Mattivi, F., Tava, A., Balestrazzi, A., Vrhovsek, U., Calligari, P., Bollini, R. and Confalonieri, M. (2004). Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Trans. Res., 13: 203–214.
  18. Gou, J., Ma, C., Kadmiel, M., Gai, Y., Strauss, S.H., Jiang, X. and Busov, V. (2011). Tissue specific expression of Populus C19 GA 2 oxidases differentially regulate above and below-ground biomass growth through control of bioactive GA concentrations. New Phytol., 192: 626-39.
  19. Gray-Mitsumune, M., Blomquist, K., McQueen-Mason, S., Teeri, T.T., Sundberg, B. and Mellerowicz, E.J. (2007). Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol. J., 6: 62–72.
  20. Halpin, C., Thain, S., Tilston, E., Guiney, E., Lapierre, C. and Hopkins, D. (2007). Ecological impacts of trees with modified lignin. Tree Genet. Genomes, 3: 101–110.
  21. Han, K.M., Dharmawardhana, P., Arias, R.S., Ma, C., Busov, V. and Strauss, S.H. (2011). Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol. J., 9: 162-78.
  22. and Dennis, E.S. (2000). Insect and herbicide resistant transgenic eucalyptus. Mol. Breeding, 6: 307–315.
  23. Hoenicka, H., Lautner, S., Klingberg, A., Koch, G., El-Sherif, F., Lehnhardt, D., Zhang, B., Burgert, I., Odermatt, J., Melzer, S., Fromm, J. and Fladung, M. (2012). Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta, 235: 359-73.
  24. Hu, J.J., Tian, Y.C., Han, Y.F., Li, L. and Zhang, B.E. (2001). Field evaluation of insect resistant transgenic Populus nigra trees. Euphytica, 121: 123–127.
  25. Hu, L., Lu, H., Liu, Q., Chen, X. and Jiang, X. (2005). Over expression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol., 25: 1273–1281.
  26. Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J. and Chiang,V.L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature, 17: 808–812.
  27. Hussey, S.G., Mizrachi, E., Spokevicius, A.V., Bossinger, G., Berger, D.K., Myburg, A. (2011). SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol., 1: 173.
  28. Jaglo Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998). Arabidopsis CBF1 over expression induces COR genes and enhances freezing tolerance. Science., 280: 104–106.
  29. Jouanin, L., Goujon, T., de Nadai, V., Martin, M.T., Mila, I., Vallet, C., Pollet, B., Yoshinaga, A., Chabbert, B., Petit-Conil, M. and Lapierre, C. (2000). Lignification in transgenic poplars with extremely reduced caffeic acid O methyltransferase activity. Plant Physiol., 123: 1363–1374.
  30. Jube, S. and Borthakur, D. (2009). Development of an Agrobacterium mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tissue Organ Cult., 96: 325-333.
  31. Kasuga, M., Liu, Q., Miura, S., Yamaguchi, S.K. and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol., 17: 287–291.
  32. Kawaoka, A., Matsunaga, E., Endo, S., Kondo, S., Yoshida, K., Shinmyo, A. and Ebinuma, H. (2003). Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol., 132: 1177–1185.
  33. Kawaoka, A., Nanto. K., Ishii. K. and Ebinuma. H. (2006). ,Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet., 55: 269–277.
  34. Kim, Y.H., Kim, M.D., Choi, Y.I., Park, S.C., Yun, D.J., Noh, E.W., Lee, H.S. and Kwak, S.S. (2011). Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol. J., 9: 334-47.
  35. Kulkarni, H.D and Lal P. (1995). Performance of eucalyptus clones at ITC Bhadrachalam India. In Proceedings of CRCTHF – IUFRO Congress, Hobart, Australia, pp. 274 - 275. 
  36. Kwon, S.I., Cho, H.J., Lee, J.S., Jin, H., Shin, S.J., Kwon, M., Noh, E.W. and Park, O.K. (2011). Over expression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. Plant Cell Environ., 34: 2212-24.
  37. Le, Q.V., Bogusz, D., Gherbi, H., Lagpartient, A., Duhoux, E. and Franche, C. (1996). Agrobacterium tumefaciens gene transfer to C. gluaca, a biological nitrogen fixing tree. Plant Sci., 118: 57-69.
  38. Leple, J.C., Dauwe, R., Morreel, K., Strome, V., Lapierre, C., Pollet, B., Naumann, A., Kang, K.Y., Kim, H., Ruel, K., Lefebvre, A., Joseleau, J.P., Grima-Pettenati, J., De Rycke, R., Andersson Gunnerase, S., Erban, A., Fehrle, I., Petit-Conil, M., Kopka, J., Polle, A., Messens, E., Sundberg, B., Mansfield, S.D., Ralph, J., Pilate, G. and Boerjan, W. (2007). Down regulation of cinnamoyl coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. The Plant Cell, 19: 3669–3691.
  39. Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J.M., Ralph, J. and Chiang, V.L. (2003). Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. PNAS, 100: 4939–4944.
  40. Li, Q., Min, D., Wang, J.P., Peszlen, I., Horvath, L., Horvath, B., Nishimura, Y., Jameel, H., Chang, H.M. and Chiang, V.L. (2011). Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol., 31: 226-36.
  41. Liang, H., Maynard, C.A., Allen, R.D. and Powell, W.A. (2001). Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol.Biol., 45: 619–629.
  42. Liu, F.H., Sun, Z.X., Cui, D.C., Du, B.X., Wang, C.R. and Chen, S.Y. (2000). Cloning of E. coli mtl-D genes and its expression in transgenic Balizhuangyang (Populus). Acta Genet. Sinica., 27: 428"433.
  43. MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. (2010). Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J., .62:689-703.
  44. Man, H., Pollmann, S., Weiler, E.W. and Kirby, E.G. (2011). Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase á-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics? J. Exp. Bot., 62: 4423-31. 
  45. Mansfield, S.D. and Weineisen, H. (2007). Wood fibre quality and kraft pulping efficiencies of trembling Aspen (Populus tremuloides Michx) clones. J. Wood Chem. Technol., 27: 35–151.
  46. Matsunaga, E,, Nanto, K., Oishi, M., Ebinuma, H., Morishita, Y., Sakurai, N., Suzuki, H., Shibata, D. and Shimada, T. (2012). Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep., 31: 225-35. 
  47. McCown, B.H., McCabe, D.E., Russell, D.R., Robison, D.J., Barton, K.A. and Raffa, K.F. (1991). Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep., 9: 590–594.
  48. Meilan, R. and Strauss, S.H. (1997). Poplar genetically engineered for reproductive sterility and accelerated flowering. In Micropropagation, genetic engineering, and molecular biology of Populus.(eds. Dillon et al.) USDA forest service, Rocky mountain research station, pp. 212-219.
  49. Meilan, R., Ma, C., Cheng, S., Eaton, J.A., Miller, L.K., Crockett, R.P., Di Fazio, S.P. and Strauss, S.H. (2000). High levels of Roundup and leaf-beetle resistance in genetically engineered hybrid cotton woods. In Hybrid poplars in the Pacific Northwest: culture, commerce and capability (eds. Blatner, K.A., Johnson J.D. and Baumgartner, D.M) Washington State University Cooperative Extension Bulletin MISC0272, Pullman, Washington, USA, pp. 29–38.
  50. Meng, L., Li, H.S., Jin, D.M., Cui, D.C. and Wang, B. (2004). Transformation of Populus deltoids with CH5B gene. Biotechnol. Bulletin, 3: 48–51.
  51. Mentag, R., Luckevich, M., Morency, M.J. and Seguin, A. (2000). Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol., 23: 405–411.
  52. Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., Herdewijn, P., Devreese, B., Van Beeumen, J., Marita, J.M., Ralph, J., Chen, C., Burggraeve, B., Van Montagu, M., Messens, E. and Boerjan, W. (2000), Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-    coenzyme A-methyltransferase, an enzyme involved in lignin biosynthesis. J. Biol. Chem., 275: 36899–36909.
  53. Mittler, R., Shulaev, V. and Lam, E. (1995). Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell, 7: 29–42.
  54. Mohamed, R., Meilan, R., Ostry, M.E., Michler, C.S. and Strauss, S.H. (2001). Bacterio-opsin gene over expression fails to elevate fungal disease resistance in transgenic poplar. Can. J. Forest Res., 31: 1–8.
  55. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D et al. (2014). The genome of Eucalyptus grandis. Nature, 510: 356–362
  56. Navarro, M., Celine, A., Yves, M., Joan, L., Walid, E.K., Christiane, M. and Teulières, C. (2010). Two EguCBF1 genes over expressed in eucalyptus display a different impact on stress tolerance and plant development. Plant Biotech. J., 9: 50-63. 
  57. Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T., Sundberg, B. and Mellerowicz, E.J. (2007). Xyloglucan endotransglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar –a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol., 48: 843–855.
  58. Noctor, G., Strohm, M., Jouanin, L., Kunert, K.J., Foyer, C.H. and Rennenberg, H. (1996). Synthesis of glutathione in leaves of transgenic poplar over expressing glutamyl cysteine synthetase. Plant Physiol., 112: 1071–1078.
  59. Obertello, M., Wall, L., Laplaze, L., Nicole, M., Auguy. F., Gherbi, H., Bogusz, D. and Franche, C. (2007). Functional analysis of the metallothionein gene cgMT1 isolated from the actinorhizal tree Casuarina glauca. Mol. Plant Microbe Interact., 20: 1231-40.
  60. Park, Y.W., Baba, K., Furuta, Y., Iida, I., Sameshima, K., Arai, M. and Hayashi, T. (2004). Enhancement of growth and cellulose accumulation by over expression of xyloglucanase in poplar. FEBS Letters., 564: 183–187.
  61. Pasonen, H.L., Seppenen, S.K., Degefu, Y., Rytkenen, A., von Weissenberg, K. and Pappinen, A. (2004). Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor. Appl. Genet., 109: 562–570.
  62. Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leplé, J.C., Pollet, B., Mila, I., Webster, E.A., Marstorp, H.G., Hopkins, D.W., Jouanin, L., Boerjan, W., Schuch, W., Cornu, D. and Halpin, C. (2002). Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnol., 20: 607–612.
  63. Prashant, S., Srilakshmi, S.M., Pramod, S., Gupta, R.K., Anil Kumar, S., Rao, K.S., Rawal, S.K. and Kavi Kishor, P.B. (2011). Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep., 30: 2215-31.
  64. Rastogi, S. and Dwivedi, U.N. (2006). Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O methyltransferase gene. Biotechnol. Prog., 22: 609-16.
  65. Salyaev, R., Rekoslavskaya, N., Chepinoga, A., Mapelli, S. and Pacovsky, R. (2006). Transgenic poplar with enhanced growth by introduction of the ugt and acb genes. New Forests, 32: 211–229.
  66. Satheeshkumar. P.K. and Gupta, A.K. (2012). Plant regeneration from transformed calli of the tree species Casuarina equisetifolia, Linn. Res. Biotechnol., 3: 12-18. 
  67. Shani, Z., Dekel, M., Tsabary, G., Goren, R. and Shoseyov, O. (2004). Growth enhancement of transgenic poplar plants by over expression of Arabidopsis thaliana endo-1,4-b-glucanase(cel1). Mol. Breeding, 14: 321–330.
  68. Shao, Z., Chen, W., Luo, H., Ye, X. and Zhan, J. (2002). Studies on the introduction of cecropin D gene into Eucalyptus urophylla to breed the resistant varieties to Pseudomonas solaniacearum. Sci. Silvae. Sin., 38: 92–97.
  69. Sonoda, T., Koita, H., Nakamoto Ohta, S., Kondo, K., Suezaki, T., Kato, T., Ishizaki, Y., Nagai, K., Iida, N., Sato, S., Umezawa, T. and Hibino, T. (2009). Increasing fiber length and growth in transgenic tobacco plants over expressing a gene encoding the Eucalyptus camaldulensis HD-Zip class II transcription factor. Plant Biotech. 26: 115– 120.
  70. Srivastava, S., Gupta, R.K., Arha, M., Vishwakarma, R.K., Rawal, S.K., Kavi Kishor, P.B. and Khan, BM. (2011). Expression analysis of cinnamoyl-CoA reductase (CCR) gene in developing seedlings of Leucaena leucocephala: a pulp yielding tree species. Plant Physiol Biochem., 49: 138-45. 
  71. Stewart, J.J., Kadla, J.F. and Mansfield, S.D. (2006). The influence of lignin chemistry and ultra structure on the pulping efficiency of clonal aspen (Populus tremuloides Michx.). Holzforschung, 60: 111–122.
  72. Strauss, S.H., Rottmann, W.H., Brunner, A.M. and Sheppard, A.L. (1995). Genetic engineering of reproductive sterility in forest trees. Mol. Breeding, 1: 5–26.
  73. Strohm, M., Jouanin, L., Kunert, K.J., Pruvost, C., Polle, A., Foyer, C.H. and Rennenberg, H. (1995). ,Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula ×alba) over expressing glutathione synthetase. Plant J., 7: 141–145.
  74. Thumma, B,R., Nolan, M.R., Evans, R. and Moran, G.F. (2005). Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus sp. Genetics, 171:1257–1265.
  75. Tournier, V., Grat, S., Marque, C., El Kayal, W., Penchel, R., Andrade, D.G., Boudet, A.M. and Teulieres, C. (2003). An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Trans. Res., 12: 403–411.
  76. Valerio, L., Carter, D., Rodrigues, J.C., Tourier, V., Gominho, J., Marque, C., Boudet, A.M., Maunders, M., Pereira, H. and Teulieres, C. (2003). Down regulation of cinnamyl alcohol dehydrogenase, a lignification enzyme in Eucalyptus camaldulensis. Mol. Breeding, 12: 157–167.
  77. Vengadesan, G., Amutha, S., Muruganantham, M., Anand, R.P. and Ganapathi, A. (2006). Transgenic Acacia sinuata from Agrobacterium tumefaciens mediated transformation of hypocotyls. Plant Cell Rep., 25, 1174-80.
  78. Wang, J., Andersson-Gunnerås, S., Gaboreanu, I., Hertzberg, M., Tucker, M.R., Zheng, B., Leœniewska, J., Mellerowicz, E.J., Laux, T., Sandberg, G. and Jones, B. (2011). Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis. PLoS One, 6: e28878.
  79. Wu, N.F., Sun, Q., Yao, B., Fan, Y.L., Rao, H.Y., Huang, M.R. and Wang, M.M. (2000). Insect resistant transgenic poplar expressing AaIT gene. Chinese J. Biotechnol., 16: 129–133.
  80. Yu, X., Kikuchi, A., Matsunaga, E., Morishita, Y., Nanto, K., Sakurai, N., Suzuki, H., Shibata, D., Shimada, T. and Watanabe, K.N. (2013). The choline oxidase gene codA confers salt tolerance to transgenic Eucalyptus globulus in a semi-    confined condition. Mol Biotechnol.,;54: 320-30.
  81. Zhang, B.Y., Su, X.H., Li, Y.L., Huang, Q.J., Zhang, X.H. and Zhang, L. (2006). Regeneration of vgn-transgenic poplar (Populus alba × P. glandulosa) and the primary observation of growth. Chinese J. Agric. Biotechnol, 3: 59–64.
  82. Zhang, C., Norris-Caneda, K.H., Rottmann, W.H., Gulledge, J.E., Chang, S., Kwan, B.Y., Thomas, A.M., Mandel, L.C., Kothera, R.T., Victor, A.D., Pearson, L. and Hinchee, M.A. (2012). Control of pollen mediated gene flow in transgenic trees. Plant Physiol., 159: 1319-34.
  83. Zhao S.M., Zu, G.C., Liu, G.Q., Huang, M.R., Xu, J.X. and Sun, Y.R. (1999). Introduction of rabbit defensin NP-1 gene into poplar (P. tomentosa) by Agrobacterium-mediated transformation. Acta Genet. Sinica., 26: 711–714.
  84. Zhong, R.Q., Burk, D.H., Morrison, W.H., Ye, Z.H. (2002). A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell, 14: 3101–3117. 

Global Footprints