PHOSPHATE SOLUBILISING MICROORGANISMS: ROLE IN PHOSPHORUS NUTRITION OF CROP PLANTS- A REVIEW

DOI: 10.5958/0976-0741.2014.00903.9    | Article Id: R-1407 | Page : 159-171
Citation :- PHOSPHATE SOLUBILISING MICROORGANISMS: ROLE IN PHOSPHORUS NUTRITION OF CROP PLANTS- A REVIEW .Agricultural Reviews.2014.(35):159-171
Deepshikha Thakur*, Rajesh Kaushal and Vineet Shyam deepshikhathakur212@gmail.com
Address : Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan-173 230, India.

Abstract

Phosphorus is the least mobile nutrient element in plant and soil compared to other essential macronutrients. Root development, stalk, stem strength, flower, seed formation, crop maturity, N-fixation in legumes and crop quality are the attributes associated with phosphorus (P) nutrition. Phosphorus solubilizing microorganisms play role in P nutrition by enhancing its availability to plants through release from inorganic and organic soil P pools by solubilization and mineralization. Principal mechanism in soil for P solubilization is lowering of soil pH by microbial production of organic acids and mineralization of organic P by acid phosphatases. Use of phosphorus solubilizing microorganisms alone or in combination with other beneficial bacteria and mycorrhiza as inoculants increase prospects of direct application of rock phosphate (RP) in P uptake and crop production.

Keywords

Mechanisms Phosphorus Phosphate solubilising microorganisms Rock phosphate.

References

  1. Abd-Alla M H, Omar S A and Omar S A. (2001). Survival of rhizobia/bradyrhizobia and a rockphosphate- solubilising fungus Aspergillus niger on various carriers from some agroindustrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutrit. 24:261–272.
  2. Ahmad, N and Jha, K K. (1968). Solubilization of phosphates and micronutrients by the plant growth promoting Rhizobacteria. Journal of Canadian Applied Microbiology 12: 65-68
  3. Altomare, C. Norvell, W A, Bjorkman T and Harman G E. (1999). Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai: Applied and Environmental Microbiology 65(7): 2926-2933
  4. Ashrafuzzaman M., Akhtar F, Razi M., Anamul M. Zahurul M., Islam, S M and Sariah Meon. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8 (7): 1247-1252
  5. Aziz-Qureshi A and Narayanasamy G. (1999). Dried effect of rock phosphates and phosphate solubilizers on soybean growth in a typic ustochrept. Journal of the Indian Society of Soil Science 47(3): 475-478
  6. Bar Yosef B, Rogers RD, Wolfram JH and Richman E. (1999). Pseudomonas cepacia mediated rock phosphate solubilizing in kaolinite and montmorllonite suspensions. Soil Science Society of America Journals 63: 1703-1708
  7. Beech, I. B., Paiva M, Caus M and Coutinho C. (2001). Enzymatic activity and within biofilms of sulphate-reducing bacteria. In: Biofilm Community Interactions: chance or necessity? [Gilbert P. G., Allison D., Brading M., Verran J. and Walker J. (eds.)] BioLine, Cardiff, UK pp. 231- 239.
  8. Biswas, D R and Narayanasamy G. (2006). Rock phosphate enriched compost: an approach to improve low grade Indian rock phosphate. Bioresource Technology 97: 2243-2254
  9. Cabello, M, Irrazabal G, Bucsinszky A M, Saparrat M and Schalamuck S. (2005). Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Mentha piperita growth in a soiless medium. J. Basic Microbiol. 45:182-189.
  10. Chabot, R. Antoun H and Cescas MP. (1996). Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaesoli. Plant and Soil. 184: 311-321
  11. Chatli, S and Sidhu, B S. (2008). Isolation and characterization of phosphate solubilizing microorganisms from the cold desert habitat of Salix alba Linn.in trans Himalayan region of Himachal Pradesh. Indian Journal of Microbiology 48: 267-273
  12. Cosgrove D J. (1967). Metabolism of organic phosphates in soil. In: A. D. Mclaren and G. H. Peterson (eds.), Soil Biochemistry, Vol. I. Marcel & Dekker, New York pp. 216-228.
  13. Cunningham JE, Kuiack C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaji. Appl Environ Microbiol. 58: 1451–1458.
  14. Dave, Arti and Patel. (1999). Inorganic phosphate solubilizing soil Pseudomonas. Indian Journal of Microbiology 39:161-164.
  15. De Freitas, Banerjee M R and Germida J J. (1997). Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake in canola. Biol.Fert.Soils. 24: 358-364
  16. Deubel A and Etoa X. (2006). Occurrence and functioning of P-solubilizing microorganisms from oil palm tree rhizosphere in Cameroon, Africa. Journal of Biotechnology. 5(24): 2450-2460.
  17. Deubel A and Merbarch W. (2005). Influence of microbiology on phosphate bioavailability in soils. In: Microorganisms in soil: Roles in genesis and functions (eds. Buscot F. and Verma A.) Springer, Berlin Heilberg pp. 177-191.
  18. Dipta B. (2013). Phosphate solubilising potential of plant growth promoting bacteria of Caulifower. M Sc. Thesis, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan (H.P) India.
  19. Dodor, D. E. and A. M. Tabatabai. (2003). Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci. 166:7–13.
  20. Doelle HW. (1969). Bacterial Metabolism. Academic Press, London, 59p.
  21. Duponnois R, Kisa M and Plenchette C. (2006). Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J. Plant Nutr. Soil Sci. 169:280–282.
  22. Dutton, V M. and Evans C S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42:881-895.
  23. Fankem H., Nwaga, D., Deubel A., Dieng., L Merbach, W., Etoa F.X . (2006). Occurence and functioning of phosphate solubilizing microorganisms from oil palm tree rhizosphere in cameroon. African Journal of Biotechnology. 5(24): 2450-2460
  24. Gaber Zayed and Heba Abdel-Motaal. (2005). Bioactive compost from rice straw enriched with rock phosphate and their effect on the phosphorus nutrition and microbial community in rhizosphere of cowpea. Bioresource Technology 96: 929-935
  25. Gaind, S. Pandey A K, and Lata. (2006). Microbial biomass, P-nutrition and enzymatic activities of wheat soil in response to phosphorus enriched organic and inorganic manures. Journal of Environmental Science and Health Part B 41:177–187
  26. Glick B R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109-11.
  27. Goenadi D H, Siswanto and Sugiarto Y. (2000). Bioactivation of poorly soluble phosphate rocks with phosphorus solubilizing fungus. Soil Science Society of America Journal 64: 927-932
  28. Goldstein A H, Bravervan K and Osoria N. (1999). Evidence for mutualism between a plant growing in a phosphate limited desert environment and a mineral environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology 30: 295-300
  29. Goldstein A H. (2000). Bioprocessing of rock phosphate ore: essential technical consideration for the development of the successful commercial technology. IFA Technical conference, New Orleans, LA .pp.1-21
  30. Goldstein, A H. (1994). Involvement of the quinoprotein glucose dehydrogenises in the solubilization of exogenous phosphates by gram-negative bacteria. In: [Torriani Gorini, A. Yagil E. and Silver S. (eds.)], Phosphate in Microorganisms: Cellular and Molecular Biology. ASM Press, Washington, D. C. pp. 197-203.
  31. Gulati, A. Rahi P and Vyas P. (2007). Characterization of phosphate solubilizing fluorescent pseudomonas from the rhizosphere of seabuckthorn growing in the cold desert of Himalayas. Current Microbiology 56: 73-79
  32. Gupta, R.R. Singal R, Shanker A, Kuhad RC and Saxena RK. (1994). A modified plate assay for screening phosphate- solubilizing microorganisms. Gen Appl Microbiol. 40: 255–260.
  33. Gupta S. (2011). Studies on selected plant growth promoting bacteria on growth and yield of Capsicum. M Sc. Thesis, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan (H.P) India.
  34. Gyaneshwar P, Naresh K G, Parekh LJ, Poole P S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant Soil. 245: 83–93.
  35. Halder A K, Mishra A K., Bhattacharya P., Chakrabartty P K. (1990). Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol; 36: 81-92
  36. Halvorson H O, Keynan A, Kornberg H L. (1990). Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol Biochem. 22:887–890.
  37. Hayat R., Ali S., Amara U., Khalid R and Ahmed I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology. 60(4): 579-598
  38. Hayman D S. (1975). Phosphorus cycling by soil microorganisms and plant roots. In: Stanley R. (ed.) Soil Microbiology. Butterworths. London, pp.67-92
  39. He, Z. L and Zhu J. (1988). Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 30: 917-923.
  40. Hedge DM, Dwivedi BS and Sudhakaran Babu S N. (1999). Biofertilizers for cereal production in India. A Review. Indian journal of Agricultural Science 69(2): 73-83
  41. Henri, F., Laurette N. N, Annette D, John Q, Wolfgang M,. François-Xavier E and Hilda, R and Fraga R. (2000). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17:319-359.
  42. Henri, F., Laurette N. N, Annette D, John Q, Wolfgang M,. François-Xavier E and Dieudonne N. (2008). Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African Journal of Microbial Research 2: 171-178
  43. Hilda R and Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advance 17(4-5): 319-339.
  44. Illmer P and Schinner F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry 27(3): 257-263
  45. Illmer P and Schinner F. (1995). Solubilization of hardly soluble Aluminium phosphate with P-solubilization microorganism. Soil Biol. Biochem. 24: 389-395.
  46. Isherword, K. F. (1998). Fertilizer use and environment. In: [Ahmed N. and Hamid A. (eds.)], Proc. Symp. Plant Nutrition Management for Sustainable Agricultural Growth. NFDC, Islamabad. pp. 57-76.
  47. Ivanova R., Bojinova D and Nedialkova K. (2006). Rock phosphate solubilization by soil bacteria. Journal of University of Chemical Technology and Metallurgy. 41(3): 297-302
  48. Kang S C, Choi M C. (1999). Solid culture of phosphate-solubilizing fungus. San’oeb misaengmul haghoeji. 27: 1–7.
  49. Kapoor KK., Mishra MM., Kukneja K. (1989). Phosphate solubilization by soil microorganisms-1 review. Indian Journal of Microbiology. 29(2): 119-127
  50. Kaundal K. (2012). Effect of selected PGPR on growth and yield of Ginger. MSc. Thesis, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan (H.P) India.
  51. Kaushal M. (2011). Effect of plant growth promoting bacteria at varying levels of N and P on cauliflower. Ph.D Thesis, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan (H.P) India.
  52. Khalid A., Arshad M and Z A Zahir. (2004). Screeening plant growth promoting bacteria for improving growth and yield of wheat. Journal of Applied Microbiology 96: 473-480
  53. Khan SM, Zaidi A and Wani PA. (2007). Role of phosphate solubilizing microorganism in sustainable agriculture- A review Agrom. Sustain. Tev 27(1): 29-43
  54. Kpomblekou, K and. Tabatabai M A. (1994). Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 158: 442-453.
  55. Krishna R, Sadasivam K V and Khanuja S P S. (1999). Mineral phosphate solubilization defective mutants of Pseudomonas sp.: express pleiotropic phenotypes. Currrent Science 76: 1032-1034.
  56. Krishnaraj P U, Goldstein A H. (2001). Cloning of a Serratia marcescence DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescence. FEMS Microbiol Lett. 205: 215–220.
  57. Kucey R M N., Janzen H H and Legget M E. (1989). Microbial mediated increase in plant available phosphorus . Adv. Agron. 42: 199-228
  58. Kudashev, I. S. (1956). The effect of phosphobacterin on the yield and protein content in grains of Autumm wheat, maize and soybean. Doki. Akad. Skh. Nauk. 8:20-23.
  59. Kundu B S and Nehra K. (2009). Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Indian Journal of Microbiology 49:120-127
  60. Kundu BS and Gera R. (2002). Host specificity of phosphate solubilizing bacteria. Indian Journal of Microbiology 42:19-21
  61. Leong J. (1986). Siderophores: Their biochemistry and Possible role in the Biocontrol of plant pathogens. Annual Review of Phytopathology 24: 187-209
  62. Lindsay W L, Vlek P L G, Chien S H. (1989). Phosphate minerals. In: Soil Environment. [Dixon JB, Weed SB, (eds)]. 2nd ed. Soil Science Society of America. Madison (WI): 1089–1130.
  63. Linu M, Stephen J., Jisha M. S. (2009). Phosphate solubilizing Gluconacetobacter sp. and Burkholderna sp. and their potential interaction with Cowpea. International Journal of Agricultural Research 4(2): 79-87
  64. Lipman J C and Mc Lean. (1918). Sulphur as a factor in soil fetility. Soil Science. 5: 243
  65. Manna M.C., J.N. Hajra and A.B. Singh. (2001). Comparative effectiveness of enriched phosphocompost and chemical fertilizer on crop yields and soil biological activity in an alluvial soil. Indian Journal of Agricultural Research. 35 (4): 247 – 250
  66. Mathur B S., Sarkar A K and Mishra B. (1980). Release of Nitrogen and Phosphorus from compost charged with rock phosphate. Journal of Indian Society of Soil Science. 28 (2): 206-212
  67. Mc Vickar MH, Bridger GL and Nelson LB. (1963). Advances in Phosphate Fertilizers. Fertilizer Technology and Usage. Soil Science Society of America, Madison 11, Wisconsin pp.155-187
  68. Mehrvarz, S., M. R. Chaichi and H. A. Alikhani. (2008). Effects of phosphate solubilising microorganisms and phosphorus chemical fertilizer on yield and yield components of Barely (Hordeum vulgare L.). Am-Euras. J. Agric. & Environ. Sci. 3: 822-828.
  69. Mishra M M, Kapoor KK and Yadav KS. (1982). Effect of compost enriched with Mussoorie rock phosphate on crop yield. Indian Journal of Agricultural Science 52: 674-678
  70. Molla, M A Z, Chowdhury A A, Islam A and Hoque S. (1984). Microbial mineralization of organic phosphate in soil. Plant Soil 78: 393-399.
  71. Narsian V and H H Patel. (2009). Relationship of physicochemical properties of rhizosphere soils with native population of mineral phosphate solubilizing fungi. Indian Journal of Microbiology 49: 60-67
  72. Nautiyal C S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms .FEMS Microbology Letters 170: 265-270.
  73. Nautiyal C S., Bhaduria S.,Kumar P., Lal H, Mondal R, Verma. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett. 182: 291-296
  74. Nautiyal CS. (1999). An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170: 265–270.
  75. Nelson M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new Inoculants. Crop management. online.
  76. Nicholas E Odongo, Hyoung-Ho K, Hee-Chul Choi, Peter S, Brian W McBride, Dannie L Romney. (2007). Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresource technology 98: 2911-2918
  77. Norrish K, Rosser H. (1983). Mineral phosphate. Soils: An Australian viewpoint. Sponsored by the Division of Soils, Commonwealth Scientific and Industrial Research Organization. Australia, Melbourne: Academic Press. CSIRO/ London, UK/Australia. p. 335– 361.
  78. Omar S A. (1998). The role of rock-phosphate-solubilizing fungi and vesicular–arbuscula mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14:211-218.
  79. Pareek R P and Gaur. (1973). Release of phosphate from TCPs by organic acids. Current Science 42: 207-220
  80. Patrik B., Olivia R., Simon H., Jimmy B., David N., John P and Fregal O. (2009). Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Applied soil ecology. 43(1): 131-138
  81. Paul NB and Sundara Rao W V B. (1971). Phosphate dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil. 35: 127-132
  82. Pikovskaya RI. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology. 17:362–370.
  83. Ponmurugan P and Gopi C. (2006). In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African journal of Biotechnology 5: 340-350
  84. Prasad M. (2002). Rock Phosphate deposits of Madhya Pradesh. Present status and future Prospects. Fertilizer News 47(2): 25-31
  85. Reyes Valery A and Valduz Z. (2006). Phosphate solubilizing microorganisms isolated from the rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant and Soil. 287(12): 69-75
  86. Rodriguez H and Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Adv. 17: 319-339
  87. Rodriguez H, Gonzalez T, Goire I and BashanY. (2004). Gluconic acid production and phosphate solubilization by the plant growth promoting bacterium Azospirillum sp. Naturwissenschften 91: 552-555
  88. Ryan P R., Tessaux Y., Thomashow L S and Weller T M. (2009). Rhizosphere engineering and mangement for sustainable agriculture. Plant soil. 321: 363-383
  89. Ryan, P. R., E. Delhaize and D. L. Jones. (2001). Function and mechanism of organic anion exudation from plant roots. Annl. Rev. Plant Physiol. Plant Mol. Biol. 52: 527-560.
  90. Sackett W G, Patten, A J and Brown C W. (1948). The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural rock phosphate. Zentralbl Bakterio 28: 698
  91. Sample EC, Soper RJ, Racz GJ. (1980). Reactions of phosphate fertilizers in soils. In: Khasawneh FE, Sample EC, Kamprath EJ, editors. The role of Phosphorus in Agricultures. American Society of Agronomy. Madison (WI): p. 263–310.
  92. Sarvanakumar D., Vijaykumar C., Kumar N., Samiyappan R. (2007). PGPR induced defense responses in the tea plant against blister blight disease. Crop prot. 26: 556-565
  93. Scheffer F and Schachtschabel P. 1988. Lehrbuch der Bodenkunde. Stuttgart: Enke.
  94. Shenoy V V and Kalagudi G M. (2005). Enhancing plant Phosphorus use efficiency for sustainable cropping. Biotechnology advances 23: 501-513
  95. Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M. (2006). Phosphate solubilization and growth promotion of maize (Zea mays L.) by the rhizosphere soil fungus Penicillium oxalicum. 18th World Congress of Soil Science. July 9–15, Philadelphia, Pennsylvania, USA.
  96. Shyam, V. (2010). Selection and characterization of rhizospheric and endophytic microorganisms of Prunus Avium. M Sc. Thesis, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan (H.P) India.
  97. Singh J., Rani N., Sidhu B.S and Beri V. (2009). Effect of Phosphocompost on Rice–Wheat System in a Non–calcareous Typic Haplustept. Journal of the Indian Society of Soil Science. 57(3): 338-344
  98. Singh S and Kapoor K K. (1998). Effects of inoculation of phosphate solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean growth under natural soil conditions. Mycorrhiza 7: 249-253
  99. Stalstrom V A. (1903). Beitrag zur Kennturs de rein-wisking steriler und in Garung bonfindlicher organischer stroffe auf dil Looslichkeit des phosphoresen der TCP. Zbl Bakt. 11: 724-732
  100. Stephen, J. and Jisha M. S. (2009). Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J. Agric. Sci. 5:135-137.
  101. Sundara B. Natarajan V and Hari K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Res. 77: 43-49.
  102. Swaby R J and Sperber J. (1958). Phosphate dissolving microorganisms in the rhizosphere of Legumes. In: Nutrition of the Legumes. [E.G Hallsworth (ed.)]. Academic Press, New York, pp.289-294
  103. Tang C and Rengel Z. (2003). Role of plant cation/anion uptake ratio in soil acidification. In: Handbook of Soil Acidity. Z. Rengel (Ed.). Marcel & Dekker, New York. pp. 57-81.
  104. Tarafdar J C and Claasen N. (1988). Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fert. Soils 5: 308-312.
  105. Tawarya K, Naito M and Wagatsuma T. (2006). Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. Journal of Plant Nutrition 29: 657-665
  106. Thakur S K and Sharma C R. (1997). Effect of Rock Phosphate enrichment and Azotobacter inoculation on the transformation of nitrogen and Phosphorus during composting. Journal of Indian Society of Soil Science 46: 228-231
  107. Tilak KV, Ranganayaki K K, Pal K K, De R., Saxena A K, Nautiyal C S, Mittal S, Tripathi AK, Johri B N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science 89(1): 136-150
  108. Tiwari, V N, Pathak, A N and Lehril K. (1988). Manurial value of compost enriched with rock phosphate and microbial inoculants in green gram. Journal of the Indian Society of Soil Science. 36: 280-283.
  109. Tomar R.K.S. (1998). Effect of phosphate solubilizing bacteria and farmyard manure on the yield of black gram. Indian Journal of Agricultural Sciences 68: 81-83
  110. Tripura C, Sashidhar B and Podile A R. (2007). Ethyl methanesulfonate mutagenesis enhanced mineral phosphate solubiization by groundnut-associated Serratia marscenes GPS-5.Current Microbiology 54: 79-84
  111. Vassilev N and Vassileva M. (2003). Biotechnological solubilization of rock phosphate on media containing agro- industrial waste. Applied Microbial Biotechnology 61: 435-440
  112. Vazquez P., Holguin G, Puente M E., Lopez A., Bashan Y. (2000). Phosphate solubilizing bacteria associated with the rhizosphere of mangroves in semi arid coastal lagoon. Biol Fert. Soils 30: 460-468
  113. Verma, L. N. (1993). Biofertilizer in agriculture. In: Organics in Soil Health and Crop Production. [P. K. Thampan (ed.)]. Peekay Tree Crops Development Foundation, Cochin, India. pp. 152-183.
  114. Vikram A, Hamzehzarghani H, Alagawadi A, Krishnaraj P U, and Chandrashekhar B S. (2007). Production of plant growth promoting substances by phosphate solubilizing bacteria isolated from vertisols. Journal of Plant Sciences 2(3): 326-333
  115. Villegas J and Fortin J A. (2002). Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can. J. Bot. 80: 571-576.
  116. Whitelaw M A, Harden T J, Bender G L. (1997). Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Austral J Soil Res. 35: 291–300.
  117. Whitelaw M A. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69: 99-151
  118. Yadaf, R S and Tarafdar J C. (2001). Influence of organic and inorganic phosphorus supply o the maximum secretion of acid phosphatase by plants. Biol. Fert. Soils 34:140-143.
  119. Yadav K and Singh T. (1991). Phosphorus solubilizing by microbial isolate from a calcifluvent. Journal of the Indian Society of Soil Science 39: 89-93
  120. Zaidi A, Khan M S, Amil M. (2003). Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). European Journal Agronomy. 19: 15–21.
  121. Zaidi A and Khan M S. (2007). Stimulatory effects of dual inoculation with phosphate solubilising microorganisms and arbuscular mycorrhizal fungus on chickpea. Australian Journal of Experimental Agriculture. 47: 1016–1022.

Global Footprints