Mycotoxins in Maize and Implications on Food Security: A Review

DOI: 10.18805/ag.R-140    | Article Id: R-140 | Page : 42-49
Citation :- Mycotoxins in Maize and Implications on Food Security: A Review.Agricultural Reviews.2021.(42):42-49
U.P. Chukwudi, F.R. Kutu, S. Mavengahama uchechukwu.chukwudi@unn.edu.ng
Address : Food Security and Safety Niche Area Research Group, Faculty of Natural and Agricultural Sciences, North-West University P/Bag X2046, Mmabatho 2735, South Africa. 
Submitted Date : 14-03-2020
Accepted Date : 15-12-2020

Abstract

Mycotoxin poisoning is not restricted to pets and farm animals, it causes diseases and death in humans. Mycotoxin producing fungi are common components of the epiphytic and endophytic microflora in crops resulting in natural crop contamination in the field and during storage. The level of contamination is influenced by the genetics of the plant and fungi, management practices and prevailing climatic conditions. The Global movement of maize products necessitates global as well as country-specific surveys on mycotoxin occurrence. Significant differences in the concentrations of deoxynivalenol, fumonisins and zearalenone were found in commercial maize for the seven years under review but no significant difference was detected between white and yellow maize types with regards to fumonisins and zearalenone concentrations. The absence of Aflatoxins, Ochratoxin-A, T2-toxin and HT-2 toxin in the commercial maize samples from 2010/2011 to 2016/2017 seasons is a food safety advantage for South Africa maize producers.

Keywords

Aflatoxin Climate change Deoxynivalenol Fumonisins Sub-saharan Africa Zearalenone

References

  1. Adekoya, I., Obadina, A., Adaku, C.C., De Boevre, M., Okoth, S., De Saeger, S. and Njobeh, P. (2018a). Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. International Journal of Food Microbiology. 270: 22-30. 
  2. Adekoya, I., Obadina, A., Phoku, J., De Boevre, M., De Saeger, S. and Njobeh, P. (2018b). Fungal and mycotoxin contamination of fermented foods from selected South African markets. Food Control. 90: 295-303. 
  3. Ahamed, S., Foster, J.S., Bukovsky, A. and Wimalasena, J. (2001). Signal transduction through the ras/Erk pathway is essential for the mycoestrogen zearalenone induced cell cycle progression in MCF 7 cells. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center. 30: 88-98. 
  4. Al-Juboory, H.H. and Juber, K.S. (2013). Efficiency of some inoculation methods of Fusarium proliferatum and F. verticilloides on the systemic infection and seed transmission on maize under field conditions. Journal of North America. 4: 583-589. 
  5. Alshannaq, A. and Yu, J-H. (2017). Occurrence, toxicity and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health. 14: 632. 
  6. Anukul, N., Vangnai, K. and Mahakarnchanakul, W. (2013). Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis. 21: 227-241.
  7. Awad, W., Ghareeb, K., Böhm, J. and Zentek, J. (2013). The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins. 5: 912-925. 
  8. Bennett, J.W. and Klich, M. (2003). Mycotoxins. Clinical Microbiology Review. 16: 497-516. DOI: 10.1128/CMR.16.3.497-516. 2003.
  9. Berthiller, F., Crews, C., Dall’Asta, C., Saeger, S.D., Haesaert, G., Karlovsky, P., Oswald, I.P., Seefelder, W., Speijers, G. and Stroka, J. (2013). Masked mycotoxins: A review. Molecular Nutrition and Food Research. 57: 165-186. 
  10. Beukes, I., Rose, L.J., Shephard, G.S., Flett, B.C. and Viljoen, A. (2017). Mycotoxigenic Fusarium species associated with grain crops in South Africa-A review. South African Journal of Science. 113: 1-12. 
  11. Cheng, Q., Jiang, S.Z., Li, S.Q., Wang, Y.X., Zhang, C.Y. and Yang, W.R. (2017). Effects of low-dose zearalenone-contaminated diets with or without montmorillonite clay adsorbent on nutrient metabolic rates, serum enzyme activities and genital organs of growing-laying hens. The Journal of Applied Poultry Research. 26: 367-375.
  12. Choudhury, D., Dobhal, P., Srivastava, S., Saha, S. and Kundu, S. (2018). Role of botanical plant extracts to control plant pathogens. Indian Journal of Agricultural Research. 52: 341-346. Doi: 10.18805/IJARe.A-5005
  13. Chukwudi, U.P., Agbo, C.U., Echezona, B.C., Eze, E.I., Kutu, F.R. and Mavengahama, S. (2020). Variability in morphological, yield and nutritional attributes of ginger (Zingiber officinale) germplasm in Nigeria. Research on Crops. 21(3): 634-642. DOI: 10.31830/2348-7542.2020.099.
  14. Czembor, E., Waśkiewicz, A., Piechota, U., Puchta, M., Czembor, J.H. and Stȩpieñ, Ł. (2019). Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between Polish currently and historically used maize inbred lines. Frontiers in Microbiology. 10: 449-449. 
  15. Eze, U.A. and Okonofua, F.E. (2015). High prevalence of male infertility in Africa: are mycotoxins to blame? African Journal of Reproductive Health. 19: 9-17. 
  16. Folcher, L., Delos, M., Marengue, E., Jarry, M., Weissenberger, A., Eychenne, N. and Regnault-Roger, C. (2010). Lower mycotoxin levels in Bt maize grain. Agronomy for Sustainable Development. 30: 711-719. 
  17. Gratz, S.W. (2017). Do plant-bound masked mycotoxins contribute to toxicity? Toxins. 9: 85.
  18. Hojnik, N., Cvelbar, U., Tavčar-Kalcher, G., Walsh, J.L. and Križaj, I. (2017). Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontami- -nation. Toxins. 9: 151. doi: 10.3390/toxins9050151.
  19. Human, U. (2018). Biomin survey reveals global rise of mycotoxins. AFMA Matrix. 27: 49-53. 
  20. IARC (2012). Economics of mycotoxins: evaluating costs to society and cost-effectiveness of interventions. IARC Sci Publ: 119-129. 
  21. ITC [International Trade Centre] (2019). Available at https://www.trademap.org/Country_SelProductCountry.aspx.
  22. Ismaiel, A. and Papenbrock, J. (2015). Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture. 5: 492-537. 
  23. Janse van Rensburg, B., McLaren, N.W., Flett, B.C. and Schoeman, A. (2015). Fumonisin producing Fusarium spp. and fumonisin contamination in commercial South African maize. European Journal of Plant Pathology. 141: 491-504.
  24. Khatibi, P., McMaster, N. and Musser, R. (2014). Survey of mycotoxins in corn distillers’ dried grains with solubles from seventy-eight ethanol plants in twelve states in the US in 2011. Toxins 6: 1155-1168. 
  25. Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R. and Nehls, I. (2010). Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied Microbiology and Biotechnology. 86: 1595-1612. 
  26. Kovalsky, P., Kos, G., Nährer, K., Schwab, C., Jenkins, T., Schatzmayr, G., Sulyok, M. and Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-An extensive survey. Toxins. 8: 363. doi: 10.3390/toxins8120363.
  27. Lavkor, I., Var, I., Saglam, S., Uckun, O., Tekin, A. and Savas, O. (2019). Presence of some mycotoxins in peanuts from harvest to storage. Legume Research 42(6): 862-866. DOI: 10.18805/LR-446.
  28. Luo, Y., Liu, X. and Li, J. (2018). Updating techniques on controlling mycotoxins-A review. Food Control. 89: 123-132. 
  29. Mannaa, M. and Kim, K.D. (2017). Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology. 45: 240-254. 
  30. Massart, F., Meucci, V., Saggese, G. and Soldani, G. (2008). High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. The Journal of Pediatrics. 152: 690-695. 
  31. Medeiros, F.H.Vd., Martins, S.J., Zucchi, T.D., Melo, I.Sd., Batista, L.R. and Machado, Jd.C. (2012). Biological control of mycotoxin-producing molds. Ciência e Agrotecnologia. 36: 483-497.
  32. Medina, Á., González-Jartín, J.M. and Sainz, M.J. (2017). Impact of global warming on mycotoxins. Current Opinion in Food Science. 18: 76-81. 
  33. Meyer, H., Skhosana, Z.D., Motlanthe, M., Louw, W. and Rohwer, E. (2019). Long term monitoring (2014-2018) of multi-mycotoxins in South African commercial maize and wheat with a locally developed and validated LC-MS/MS method. Toxins. 11: 271. doi.org/10.3390/toxins11050271.
  34. Misihairabgwi, J., Ezekiel, C., Sulyok, M., Shephard, G. and Krska, R. (2017). Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Critical Reviews in Food Science and Nutrition. 59: 43-58. 
  35. Murillo-Williams, A. and Munkvold, G. (2008). Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant Disease. 92: 1695-1700. 
  36. Mwanza, M., Ndou, R.V., Dzoma, B., Nyirenda, M. and Bakunzi, F. (2013). Canine aflatoxicosis outbreak in South Africa (2011): A possible multi-mycotoxins aetiology. Journal of the South African Veterinary Association. 84: 1-5. 
  37. Njobeh, P.B., Dutton, M.F., Åberg, A.T. and Haggblom, P. (2012). Estimation of multi-mycotoxin contamination in South African compound feeds. Toxins. 4: 836-848. 
  38. OECD/FAO (2018). OECD-FAO Agricultural Outlook 2018-2027. OECD Publishing/Food and Agriculture Organization of the United Nations.
  39. Orina, I., Manley, M. and Williams, P.J. (2017). Non-destructive techniques for the detection of fungal infection in cereal grains. Food Research International. 100: 74-86. 
  40. Ozcakmak, S., Gul, O., Dervisoglu, M., Yilmaz, A., Sagdic, O. and Arici, M. (2017). Comparison of the effect of some essential oils on the growth of Penicillium verrucosum and its Ochratoxin A production. Journal of Food Processing and Preservation. 41: e13006. 
  41. Park, B.J., Takatori, K., Sugita-Konishi, Y., Kim, I-H., Lee, M-H., Han, D-W., Chung, K-H., Hyun, S.O. and Park, J-C. (2007). Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surface and Coatings Technology. 201: 5733-5737. 
  42. Perczak, A., Juœ, K., Marchwiñska, K., Gwiazdowska, D., Waœkiewicz, A. and Goliñski, P. (2016). Degradation of zearalenone by essential oils under in vitro conditions. Frontiers in Microbiology. 7:1224. doi: 10.3389/fmicb.2016.01224.
  43. Picot, A., Barreau, C., Caron, D., Lannou, C. and Richard-Forget, F. (2011). The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Applied and Environmental Microbiology. 77: 8382-8390. 
  44. Pierron, A., Alassane-Kpembi, I. and Oswald, I.P. (2016). Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Management. 2: 21. DOI: 10.1186/s40813-016-0041-2.
  45. Pietro, A.D., Madrid, M.P., Caracuel, Z., Delgado Jarana, J. and Roncero, M.I.G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology. 4: 315-325. 
  46. Pray, C.E., Rheeder, J.P., Gouse, M., Volkwyn, Y., Van Der Westhuizen, L. and Shephard, G.S. (2013). Bt maize and fumonisin reduction in South Africa: Potential health impacts. In: Falck-Zepeda, J.B., Gruère, G.P., Sithole-Niang, I., editors. Genetically modified crops in Africa: Economic and policy lessons from countries south of the Sahara. International Food Policy Research Institute (IFPRI) p. 43-59.
  47. Rheeder, J., Van der Westhuizen, L., Imrie, G. and Shephard, G. (2016). Fusarium species and fumonisins in subsistence maize in the former Transkei region, South Africa: a multi-year study in rural villages. Food Additives and Contaminants: Part B. 9: 176-184. 
  48. Robinson, A., Johnson, N.M., Strey, A., Taylor, J.F., Marroquin-Cardona, A., Mitchell, N., Afriyie-Gyawu, E., Ankrah, N-A., Williams, J.H. and Wang, J-S. (2012). Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans. Food Additives and Contaminants: Part A. 29: 809-818. 
  49. Russell, M., Paterson, R. and Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International. 43: 1902-1914. 
  50. SAGL (2018). South African Maize Crop Quality Report 2016/2017 Season, Pretoria, South Africa. 
  51. Santiago, R., Cao, A. and Butrón, A. (2015). Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins. 7: 3267-3296. 
  52. Shephard, G.S. (2008). Impact of mycotoxins on human health in developing countries. Food Additives and contaminants. 25: 146-151. 
  53. Singh, S.D. and Chuturgoon, A.A. (2017). A comparative analysis of mycotoxin contamination of supermarket and premium brand pelleted dog food in Durban, South Africa. Journal of the South African Veterinary Association. 88: 1-6. 
  54. Sumalan, R-M., Alexa, E. and Poiana, M-A. (2013). Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chemistry Central Journal. 7: 32. doi: 10.1186/1752-153X-7-32.
  55. Vaughan, M.M., Huffaker, A., Schmelz, E.A., Dafoe, N.J., Christensen, S., Sims, J., Martins, V.F., Swerbilow, J., Romero, M. and Alborn, H.T. (2014). Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides. Plant, Cell and Environment. 37: 2691-2706.
  56. Wild, C.P., Miller, J.D. and Groopman, J.D. (2015). Mycotoxin control in low-and middle-income countries. International Agency for Research on Cancer Lyon, France. 
  57. Zain, M.E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society. 15: 129-144. 

Global Footprints