Therapeutic Potential of Rubber Latex: A Review

DOI: 10.18805/ag.R-138    | Article Id: R-138 | Page : 99-104
Citation :- Therapeutic Potential of Rubber Latex: A Review.Agricultural Reviews.2021.(42):99-104
Malini Devi Raman Ramarao, Ong Ming Thong, Sunderasan Elumalai  omt@usm.my
Address : Institute for Research in Molecular Medicine (INFORMM), University Sains, Malaysia, 11800 USM, Pulau Pinang, Malaysia.
Submitted Date : 13-02-2020
Accepted Date : 9-12-2020

Abstract

Exploration of the constituents of rubber for medicinal application is very limited due to the concern of allergenicity. However, the recent discovery of the ability of latex sera to exert specific antiproliferative activity against cancer-origin cell lines has paved a light of utilising rubber latex as therapeutics. Rubber latex and its seed oil show many potentials in various biological activities such as antifungal, antioxidant, anti-melanogenesis as well as a biomaterial in relation to angiogenesis. This review describes the current scientifically reported progress on the potential use of rubber in the field of medical research plus positive side concerning latex allergenicity.

Keywords

Allergen Hevea brasiliensis Natural rubber latex

References

  1. Akasawa, A. et al. (1996). A novel acidic allergen, Hev b 5, in latex Purification, cloning and characterization. J. Biol. Chem. 271: 25389-25393.
  2. Alenius, H. et al. (1996). The main IgE-binding epitope of a major latex allergen, prohevein, is present in its N-terminal 43-amino acid fragment, hevein. J. Immunol. 156: 1618-1625.
  3. Araújo, L.A. et al. (2017). Protein from Hevea brasiliensis “Hev b 13” latex attenuates systemic inflammatory response and lung lesions in rats with sepsis. Brazilian J. Biol. 78(2): 271-280.
  4. Araujo, M.M. et al. (2012). Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cir. Bras. 27: 566-571.
  5. Azevedo Borges, F. et al. (2014). Natural rubber latex: study of a novel carrier for Casearia sylvestris Swartz delivery. International Scholarly Research Notices, vol. 2014, 5 pages. https://doi.org/10.1155/2014/241297.
  6. Balabanian, C.A.C.A. et al. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. J. Oral Sci. 48: 201-205.
  7. Barros, N.R. de et al. (2015). Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J. Mater. https://doi.org/10.1155/2015/807948.
  8. Barros, N.R. de et al. (2018). Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomed. Phys. Eng. Express.
  9. Brehler, R. and Kütting, B. (2001). Natural rubber latex allergy: a problem of interdisciplinary concern in medicine. Arch. Intern. Med. 161: 1057-1064.
  10. Brücher, H. (2012). Useful Plants Of Neotropical Origin and their Wild Relatives. Springer Science and Business Media.
  11. Chaikul, P. et al. (2017). Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Ind. Crops Prod. 108: 56-62.
  12. Czuppon, A.B. et al. (1993). The rubber elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J. Allergy Clin. Immunol. 92: 690-697.
  13. Daruliza, K.M.A. et al. (2011). Anti-Candida albicans activity and brine shrimp lethality test of Hevea brasiliensis latex B-serum. Eur. Rev. Med. Pharmacol. Sci. 15: 1163-1171.
  14. Daruliza, K.M.A. et al. (2011). Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur. Rev. Med. Pharmacol. Sci. 15: 1027-1033.
  15. Dias Murbach, H. et al. (2014). Ciprofloxacin release using natural rubber latex membranes as carrier. Int. J. Biomater., Hindawi Publishing Corporation,https://doi.org/10.1155/2014/157952.
  16. Dijkman, M.J. (1951). Hevea: thirty years of research in the Far East The Chronica Botanica co, Waltham, mass: USA; 348p.
  17. Duke, J.A. and Wain, K.K. (1981). Medicinal Plants of the World. 3 vol. Computer index with more than 85,000 entries. Plants Genetics and Germplasm Institute. Agric. Res. Serv. Beltsville, Maryl.
  18. Eka, H.D. et al. (2010). Potential use of Malaysian rubber (Hevea brasiliensis) seed as food, feed and biofuel. Int. Food Res. J. 17: 527-534.
  19. Ereno, C. et al. (2010). Latex use as an occlusive membrane for guided bone regeneration. J. Biomed. Mater. Res. Part A, 95: 932-939.
  20. Florence, U. and Fashorant, E.L. (2018). Corynespora leaf fall of Hevea brasilensis : Challenges and prospect. 13: 2098-2103.
  21. Frade, M.A.C. et al. (2006). A natural biomembrane as a new proposal for the treatment of pressure ulcers. Med Cutánea Ibero-Latino-Americana. 34: 133-138.
  22. Frade, M.A.C. et al. (2004). Management of diabetic skin wounds with a natural latex biomembrane. Med. Cutan. Iber. Lat. Am. 32: 157-162.
  23. Fuller, M.F. (1988). Nutrition and Feeding. In: Seminar Pig Production in Tropical and Subtropical Regions. pp. 28-84.
  24. Giordani, R. et al. (2002). Antifungal effect of Hevea brasiliensis latex with various fungi. Its synergistic action with amphotericin B against Candida albicans. Mycoses. 45: 476-481.
  25. Guidelli, É.J. et al. (2013). Silver nanoparticles delivery system based on natural rubber latex membranes. J. Nanoparticle Res. 15: 1536.
  26. Hagan, James et al. (2005). The British and rubber in Malaya, c 1890-1940. 143-150.
  27. Havanapan, P. et al. (2016). Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J. Proteomics. 131: 82-92.
  28. Herculano, R.D. et al. (2010). Metronidazole release using natural rubber latex as matrix. Mater. Res. 13: 57-61.
  29. Herculano, R.D. et al. (2009). Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater. Res. 12: 253-256.
  30. Herculano, R.D. et al. (2011). On the release of metronidazole from natural rubber latex membranes. Mater. Sci. Eng. C. 31: 272-275.
  31. Kerche-Silva et al. (2017). Free-radical scavenging properties and cytotoxic activity evaluation of latex C-serum from Hevea brasiliensis RRIM 600. Free Radicals Antioxidants. 7(1): 107-114
  32. Kerche-Silva, L.E. et al. (2018). Natural Rubber Latex Biomaterials in Bone Regenerative Medicine. In: Biomaterials in Regenerative Medicine. InTech.
  33. Kleawkla, A. (2018) Effect of crosslinking agent and starch contents on hydrogel from deproteinized natural rubber latex and starch. SNRU J. Sci. Technol. 10: 13-18.
  34. Lam, K.L. et al. (2012). Latex C-serum from Hevea brasiliensis induces non-apoptotic cell death in hepatocellular carcinoma cell line (HepG2). Cell Prolif. 45: 577-585.
  35. Lam, K.L. et al. (2015). Proteins of dialysed c-serum supernatant sub-fractions elicit anti-proliferative activity on human cancer-origin cells. J. Rubb. Res. 18: 49-59.
  36. Lee, S.W. and Wendy, W. (2017). Malaysian rubber (Hevea brasiliensis) seed as alternative protein source for red hybrid tilapia, Oreochromis sp., farming. Aquac. Aquarium, Conserv. Legis. 10: 32-37.
  37. Lourith, N. et al. (2014). Para rubber seed oil: new promising unconventional oil for cosmetics. J. Oleo Sci. 63: 709-716.
  38. Malaysian Rubber Board, M. (2018). Natural Rubber Stastistic 2018.
  39. Mekonnen, A. (2015). The West and China in Africa: Civilization without Justice Wipf and Stock Publishers.
  40. Mendonça, R.J. et al. (2010). Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phyther. Res. 24: 764-768.
  41. Miranda, M.C.R. et al. (2018). Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids. 50(5): 503-511.
  42. Mrue, F. et al. (2004). Evaluation of the biocompatibility of a new biomembrane. Mater. Res. 7: 277-283.
  43. Musigamart, N. et al. (2014). A rapid quantitative analysis of native antioxidants in natural rubber (Hevea brasiliensis) during maturation. In: Advanced Materials Research. Trans. Tech. Publ. pp. 410-414.
  44. Njwe, R.M. et al. (1988). Potential of rubber seed as protein concentrate supplement for dwarf sheep of Cameroon. In: Utilization of Research Results on Forage and Agricultural By-product Materials as Animal Feed Resources in Africa. Proceedings of the first joint workshop held in Lilongwe, Malawi., pp. 5-9.
  45. Ong, M.T. et al. (2009). Susceptibility of HeLa (Cancer-origin) cells to a Sub-fraction of latex B-serum. J. Rubb. Res. 12: 117-124.
  46. Palosuo, T. et al. (2007). Latex allergy: the sum quantity of four major allergens shows the allergenic potential of medical gloves. Allergy. 62: 781-786.
  47. Palosuo, T. et al. (1998). Measurement of natural rubber latex allergen levels in medical gloves by allergen specific IgE ELISA inhibition, RAST inhibition and skin prick test. Allergy. 53: 59-67.
  48. Palosuo, T. et al. (2002). Quantitation of latex allergens. Methods. 27: 52-58.
  49. Pinho, E.C.C.M. de et al. (2004). Experimental use of latex biomembrane in conjunctival reconstruction. Arq. Bras. Oftalmol. 67: 27-32.
  50. Reed, C.F. (1976). Information summaries on 1000 economic plants. Typescripts Submitt. to USDA, 102-103.
  51. Ren, F. et al. (2012). Chemical constituents of the seed shell of Hevea brasiliensis. Chinese J. New Drugs. 21(19): 2311-2315.
  52. Rubio, M.S. (2006). Hevea brasiliensis Muell. Arg.: Ethnobotanic and/or ethnomedical uses and latex industrial application.
  53. Selle, C.M. et al. (1983). Evaluation of chemical and nutritional characteristics of the seed of the rubber tree (Hevea brasiliensis). Arch. Latinoam. Nutr. 33: 884-901.
  54. Suffness, M. (1990). Assays related to cancer drug discovery. Methods Plant Biochem. Assays Bioactivity. 71-133.
  55. Suksaeree, J. et al. (2012). Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem. Eng. Res. Des. 90: 906-914.
  56. Sunderasan, E. et al. (2014). Anti-proliferative activity of natural rubber latex sera on human cancer cell lines. World Anti-Cancer Congress and Exhibition, Universiti Sains Malaysia, Penang, Malaysia.
  57. Sunderasan, E. et al. (2013). Cell viability assay guided fractionation of natural rubber latex sera. J. Rubber Res. 16: 3.
  58. Sutherland, M.F. et al. (2002). Specific monoclonal antibodies and human immunoglobulin E show that Hev b 5 is an abundant allergen in high protein powdered latex gloves. Clin. Exp. Allergy. 32: 583-589.
  59. Teixeira, L. de B. et al. (2012). Oral treatment with Hev b 13 ameliorates experimental colitis in mice. Clin. Exp. Immunol. 169: 27-32.
  60. Teixeira, L.D.B. et al. (2012). Oral treatment with Hev b 13 prevents experimental arthritis in mice. Clin. Exp. Immunol. 168: 285-290.
  61. Udo, M.D. et al. (2016). Effects of processing on the nutrient composition of rubber seed meal. J. Saudi Soc. Agric. Sci. 17(3): 297-301.
  62. Wigati, S. et al. (2014). Analysis of rubber leaf (Hevea brasiliensis) potency as herbal nutrition for goats. Proc. 16th AAAP Anim. Sci. Conggress. 2: 497-500.
  63. Zhang, Y. et al. (2017). Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiol. 37: 261-269. 

Global Footprints