Physical methods of gene transfer: Kinetics of gene delivery into cells: A Review

DOI: 10.5958/0976-0741.2015.00007.0    | Article Id: R-1368 | Page : 61-66
Citation :- Physical methods of gene transfer: Kinetics of gene delivery into cells: A Review.Agricultural Reviews.2015.(36):61-66
A.K. Das*, Parul Gupta and D. Chakraborty achintya137@yahoo.com
Address : Division of Animal Genetics and Breeding, Faculty of Veterinary Science and Animal Husbandry, (SKUAST-J), R.S. Pura, Jammu- 181 102, India.

Abstract

The ability to introduce isolated DNA into cells has tremendous influence on advances of molecular biology. Recently, with the development of attractive strategies for gene therapy, successful gene delivery has gained importance once again and become a major challenge in this field. During the past decades, a wide repertoire of gene transfer techniques has evolved. The intentional introduction of recombinant DNA molecules into a living organism can be achieved in many ways. The array of methods available to move DNA into the nucleus provides the flexibility necessary to transfer genes into cells as physically diverse are Microinjection, Biolistic gene transfer, Electroporation, Sonoporation, Laser irradiation / Photoporation, Magnetofection, Hydroporation and Impalefection.The purpose of this article is to summarise available physical methods of gene transfer, their principles, advantages and limitations.

Keywords

Genetic engineering Gene gun Gene therapy Microinjection.

References

  1. Celis, J. E. (1984) Microinjection of somatic cells with micropipettes: comparison with other transfer techniques. Biochem. J. 223 (2), 281-291
  2. Celis, J. E. (1978) Injection of tRNAs into somatic cells: search for in vivo systems to assay potential nonsense mutations in somatic cells. Brookhaven Symp. Biol. 29, 178-196
  3. Elder, S.A., (1958) Cavitation microstreaming. J Acoust Soc Amer., 31(1), 54–64
  4. Freeley, M., Long, A (2013). Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 455: 133-147.
  5. Graessmann, A., Graessman, M., Hofmann, H., Niebel, J., Brandler, G. and Mueller, N. (1974) Inhibition by interferon of SV40 tumor antigen formation in cells injected with SV40 cRNA transcribed in vitro FEBS Lett. 39, 249-251
  6. Greenleaf, W. J., Bolander, M. E., Sarkar, G., Goldring, M. B., Greenleaf, J. F (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol. 24, 587–595.
  7. Helios (2010) Gene Gun System Instruction Manual [http://www.bio-rad.com/LifeScience/pdf/Bulletin_9541.pdf]
  8. Jixiang Xia, Angela Martinez, Henry Daniell, Steven N Ebert (2011) Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques, BMC, Biotechnol. 11: 62.
  9. Kammili R K, Taylor D G, Xia J, Osuala K, Thompson K, Menick D R (2010) Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo. Stem Cells Dev. 19: 1437-    1448.
  10. Kikkert J R, Vidal J R, Reisch B I (2005) Stable transformation of plant cells by particle bombardment/biolistics. Methods Mol Biol; 286: 61-78.
  11. Klein T. M, Wolf E. D, Wu R, Sanford J. Hugh C. (1987) Velocity microprojeectiles for delivering nucleic acids into living cells. Nature’: 327: 70-3.
  12. Kohn D B, Candotti F (2009) Gene therapy fulfilling its promise. N Engl J. ed , 360: 518-521
  13. Kurata, S., Tsukakoshi, M., Kasuya, T., Ikawa, Y. (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res. 162, 372–378.
  14. Lawrie, A., Brisken, A. F., Francis, S. E. (2000,) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7: 2023–2027.
  15. Liu, Y., Yang, H., Sakanishi, A (2006). Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24: 1-16.
  16. Lu, Q. L., Liang, H. D., Partridge, T., Blomley, M. J (2003) Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. 10:396–405.
  17. McKnight, T. E., Melechko, A. V.,Griffin, G. D., Guillorn, M. A., Merkulov, V. I., Serna, F., Hensley, D. K., Doktycz, M. J., Lowndes, D. H., Simpson, M. L.(2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology., 14, 551–556.
  18. McKnight, T.E., A.V. Melechko, Hensley, D.K., Mann, D.G.J. Griffin, G.D., Simpson, M.L (2004) Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano Letters, 4(7), 1213-1219
  19. Miller, E.M., Nickoloff, J.A. (1995) Escherichia coli Electrotransformation. In Electroporation Protocols for Microorganisms (ed. Nickoloff, J.A.), Humana Press, Totowa, New Jersey, pp 105-114.
  20. Nakamura, H., Funahashi, J (2013). Electroporation: past, present and future. Dev Growth Differ 55: 15-19.
  21. Nickoloff, J.A. (1995) Preface. In Electroporation Protocols for Microorganisms (ed. Nickoloff, J.A.), Humana Press, Totowa, New Jersey, pp v-vi.
  22. Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA.(2001). Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bol . 52 (357):865-74.
  23. Ross, J. P., Cai, X., Chiu, J. F., Yang, J., Wu, J.( 2002) Optical and atomic force microscopic studies on sonoporation. J. Acoust. Soc. Am., 111, 1161–1164.
  24. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9: 308-345.
  25. Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM, et al. (2014). Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 1: 184-203.
  26. Sagi, S., Knoll, T., Trojan, L., Schaaf, A., Alken P., Michel, M. S (2003) Gene delivery into prostate cancer cells by holmium laser application. Prostate Cancer and Prostatic Diseases. 6, 127–130.
  27. Sanford, J. C (1990) Biolistic plant transformation. Physiologia Plantarum. 79, 206-209
  28. Shirahata, Y., Ohkohchi, N., Itayak, H., Satomi, S (2001) New technique for gene transfection using laser irradiation. J Inv Med., 49, 184–190.
  29. Trompeter, H.I., Weinhold, S., Thiel, C., Wernet, P., Uhrberg, M (2003). Rapid and highly efficient gene transfer into natural killer cells by nucleofection. J Immunol Methods 274: 245-256.
  30. Tsong, T. Y (1991) Electroporation of cell membranes. Biophys. J., 60, 297-306.
  31. Uchida M, Li X W, Mertens P, Alpar H O (2009) Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta. 1790 (8): 754-64.
  32. Weaver, J.C. (1995) Electroporation Theory: Concepts and Mechanisms. In Electroporation Protocols for Microorganisms (ed Nickoloff, J.A.), Humana Press, Totowa, New Jersey, pp 1-26.
  33. Withers, H. L (1995) Direct Plasmid Transfer Between Bacterial Species and Electrocuring. In Electroporation Protocols for Microorganisms (ed Nickoloff, J.A.), Humana Press, Totowa, New Jersey, pp 47-54.
  34. Wu, J., Ross, J. R., Chiu, J. F (2002) Reparable sonoporation generated by microstreaming. J. Acoust. Soc. Am., 111: 1460–1464.
  35. Zhang, G., Budker, V. Wolff, J.A. (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 10: 1735–1737.

Global Footprints