SALINITY STRESS AND SUSTAINABLE AGRICULTURE- A REVIEW

DOI: 10.5958/j.0976-0741.35.1.004    | Article Id: R-1355 | Page : 34-41
Citation :- SALINITY STRESS AND SUSTAINABLE AGRICULTURE- A REVIEW.Agricultural Reviews.2014.(35):34-41
K.V. Chaitanya*, Ch. Rama Krishna1, G. Venkata Ramana and SK. Khasim Beebi viswanatha.chaitanya@gmail.com
Address : Department of Biotechnology, GIT, GITAM University, Visakhapatnam- 530 045, India

Abstract

Soil Salinity is being recognized as a major threat to the agriculture and food production in the arid and semi-arid soils. Accumulation of sodium, magnesium and calcium salts enhances the alkalinity of the soils making the crop production difficult. Plant system has developed certain adaptation strategies for tolerating the toxicity of the salts in the soil.  The present review focuses on the probable sources of soil salinity, induction of toxicity mechanisms of salinity stress tolerance in crop plants along with the strategies needed to be adapted to make agriculture a sustainable one.

Keywords

Crop plants Osmolytes Salinity Salinization Sustainability Tolerance mechanisms.

References

  1. Ali,H., Afzal, M.N. and Muhammad, D. (2009). Effect of sowing dates and plant spacing on growth and dry matter partitioning in cotton (Gossypium hirsutum L.). Pak. J. Bot., 41: 2145–2155.
  2. Attia, H., Karray, N. and Lachaâl, M. (2009). Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Sci., 177: 161-167.
  3. Burger F. and Celková, A. (2003). Salinity and sodicity hazard in water flow processes in the soil. Plant Soil Environ., 49: 314–320.
  4. Camilla, P., Stefano, M. and Sergey, S. (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ. Exp. Bot., 84: 44 – 51.
  5. Candan, N. and Tarhan, L.(2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci., 163: 769-779.
  6. Chen, T.H.H. and Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trend Plant Sci., 13: 499-505.
  7. Cushman, J.C., Agarie, S., Albion, R.L., Elliot, S.M., Taybi, T. and Borland, A.M. (2008). Isolation and characterization of mutants of common ice plant deficient in Crassulacean Acid Metabolism. Plant Physiol., 147: 228–238.
  8. Datta , K.K., Jong , C.de., (2002) Adverse effect of water logging and soil salinity on crop and land productivity in northwest region of Haryana, India, Agricultural water management,3:223–238.
  9. Djanaguiraman, M., Sheeba, J.A., Shanker, A.K., Devi, D.D. and Bangarusamy, U. (2006). Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant and Soil, 284: 363–373.
  10. Dong, H. Z., Li, W.J., Tang, W. and Zhang, D.M. (2009). Early plastic mulching increases stand establishment and lint yield of cotton in saline ûelds. Field Crops Res., 111: 269–275.
  11. Dubey, R.S. (1997). Photosynthesis in plants under stressful conditions. In: Handbook of Photosynthesis.c Pessarakli, M. (eds) Marcel Dekker. New York. USA. 859-975.
  12. Egamberdieva, G.M. E., Albacete, A Martý´nez-Andujar, C., Acosta, M., Romero-Aranda, R., Dodd, I.C., Lutts, S. and Pe¢rez-Alfocea, F. (2008). Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot., 59: 3039–3050.
  13. Farouk, S. (2011). Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. Journal of Stress Physiology & Biochemistry, 7: 117-138.
  14. Foyer, C.H. and Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ.28: 1056–1071.
  15. Ghoulam, C., Foursy, A. and Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot., 47: 39-50.
  16. Hasegawa, P.M., Bresan, R.A., Zhu, J.K. and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Ann.Rev. Plant Physiol. Plant Mol. Biol., 51: 4632-4649.
  17. Hemapriya, R., Sankar K. and Imran A. Dar (2010). Geologic and geomorphologic investigation of Gadilam river basin (India). Journal of Environmental Research and Development, 4: 3.
  18. Hernandez, J.A., Campillo, A., Jimenez, A., Alacon, J.J. and Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol., 141: 241–251.
  19. Higbie, S. M., Wang, F., Mc, D., Stewart, J., Sterling, T.M., Lindemann, W.C., Hughs, E. and Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int. J. Agron., 1: 1–12.
  20. Homaee, M., Feddes, R.A. and Dirksen, C. (2002). A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Sci. Soc. Am. J., 66: 1764–1772.
  21. Hong, Z., Lakkineni, K., Zhang, Z. and Verma, D.P.S. (2000). Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol., 122: 1129–1136.
  22. Jaleel, C.A., Sankar, B., Sridharan, R.., Paneerselvam, R..(2008). Soil Salinity Alters Growth, Chlorophyll Content, and Secondary Metabolite Accumulation in Catharanthus roseus, Turkish Journal of Biology, 32: 79-83.
  23. Khorsandi, F. and Anagholi, A. (2009). Reproductive compensation of cotton after salt stress relief at different growth stages. J. Agron. Crop Sci., 195: 278–283.
  24. Lee, D.H., Kim, Y.S. and Lee, C.B. (2001). The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa). J. Plant Physiol. 158: 737–745.
  25. Lobell, D. B., Ortiz-Monsterio, J.I., Gurrola, F.C. and Valenzuuela, L. (2007). Identiûcation of saline soils with multiyear remote sensing of crop yields. Soil Sci. Soc. Am. J., 71: 777–783.
  26. Maas, E.V. and Grattan, S.R. (1999). Crop yields as affected by salinity. In: Handbook of Photosynthesis. Pessarakli, M. (eds). Marcel Dekker. New York. USA. 55–108.
  27. Maggio, A., De Pascale, S., Fagnano, M. and Barbieri, G. (2011). Saline agriculture in Mediterranean environments. Italian journal of Agronomy, 6: 36-43,
  28. Mariam, K., Noel, A.T. and Carmen L. (2006). Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid Supply. J. Plant Growth Regul., 25: 110–119.
  29. Meloni, D. A., Oliva M.A., Martinez, C.A. and Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 49: 69–76.
  30. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, 7: 405-410.
  31. Munns, R. (2002). Comparative physiology of salt and water stress Plant Cell Environ., 25: 239–250.
  32. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol., 167: 645-656.
  33. Munns, R., James, R.A. and La¨uchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57: 1025–1043.
  34. Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651–668.
  35. Nasrin, A, B., Anamul, H., Megumi, W-S., Mohammad, M.I., Misugi, U., Ken, M., Yoshimasa, N. and Yoshiyuki M. (2010). Proline and glycine betaine Ameliorated NaCl Stress via Scavenging of hydrogen peroxide and methyl glyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience, Biotechnology and Biochemistry, 74: 2043-2049.
  36. Neumann, P. (1997). Salinity resistance and plant growth revisited. Plant, Cell Environ.,20: 1193-1198.
  37. Omami, E.N., Hammes, P.S. and Robbertse, P.J. (2006). Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. NewZeal. J. Crop Hort. Sci., 34: 11-22.
  38. Parvaiz, A. and Satyavati, S. (2008). Salt stress and phyto-biochemical responses of plants - A review. Plant Soil Environ., 54: 89-99.
  39. Piotr, S. and Giles N.J. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol., 149: 1154-1165.
  40. Ponnamperuma, F.N. (1984). Role of cultivar tolerance in increasing rice production in saline lands. In: Salinity tolerance in plants: strategies for crop improvement. [Staples, R.B. and G.H. Toenniessen (eds)]. John Wiley and Sons, New York. 255-271.
  41. Ramana, G.V., Sweta Padma, P. and Chaitanya, K.V. (2012). Differential responses of four soybean (Glycine max L.) cultivars to salinity stress. Legume Res., 35: 185 – 193.
  42. Rao, D.L.N., Giller, K.E., Yeo, A.R., Flowers, T.J. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chick pea (Cicer arietinum). Annals of Botany 89:563-570
  43. Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot., 57: 5, 1017–1023.
  44. Rodriguez-Rosales, M.P., Kerkeb, L., Bueno, P. and Donaire, J.P. (1999). Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+ ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculantum Mill.) calli. Plant Sci., 143: 143–150.
  45. Romero, A., Soria R.T. and Cuartero, S. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci., 160: 265-272.
  46. Romero-Aranda, R., Soria, T. and Cuartero, J. (2001). Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci., 160: 265–272.
  47. Said-Al, A. and Omer E.A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57: 72-87.
  48. Sai Ram, R., Veerabhadra Rao, K., Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration , Plant science, 5: 1037–1046.
  49. Sangeeta, Y., Irfan, M., Aqil, A. and Shamsul, H. (2011). Causes of salinity and plant manifestations to salt stress: A review. J. Environ. Biol., 32: 667-685.
  50. Seyed, M., Shahab, J., Bahram, A., Mohammad, Z., Rasool, A.Z. and Majid, K. (2011). Soil salinity alters the morphology in Catharanthus roseus and its effects on endogenous mineral constituents. Middle-East Journal of Scientific Research, 7: 07-11.
  51. Sohan, D., Jason, R. and Zajcek, J. (1999). Plant-water relations of NaCl and calcium-treated sunflower plants. Env. Exp. Bot., 42: 105-111.
  52. Sultana, N., Ikeda, T. and Kashem, M.A. (2001). Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ. Exp. Bot., 46: 129-140.
  53. Suriyan, C. and Chalermpol, K. (2010). Effect of glycine betaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk. J. Agric. For., 34: 517-527.
  54. Tester, M. and Davenport R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot., 91: 503–527.
  55. Town, M. H., Chandrasekhar, T., Mahamed, H., Zafar, S., Brhan, K.S. and Rama Gopal, G. (2008). Recent advances in salt stress biology – a review. Biotechnology and Molecular Biology Review, 3: 8-13.
  56. Ventura, M., Scandellari, F., Ventura, F., Guzzon, B., Rossi P.P. and Tagliavini, M. (2008). Nitrogen balance and losses through drainage waters in an agricultural watershed of the Po Valley (Italy). Europ. J. Agronomy, 29:108-115.
  57. Win, K.T. (2011). Genetic analysis of Myanmar Vigna species in responses to salt stress at the seedling stage. Afr. J. Biotechnol., 10: 1615-1624.
  58. Wu, H.J., Zhang, Z., Wang, J.Y., Oh, D.H., Dasanayake, M., Liu, B., Huang, Q., Sun, H.X., Xia, R., Wu, Y., Wang, Y.N., Yang, Z., Liu, Y., Zhang, W., Zhang, H., Chu, J., Yan, C., Fang, S., Zhang, J., Wang, Y., Zhang, F., Wang, G., Lee, S.Y., Cheeseman, J.M., Yang, B., Li, B., Min, J., Yang, L., Wang, J., Chu, C., Chen, S.Y., Bohnert, H.J., Zhu, J.K., Wang, X.J. and Xie, Q. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. U S A., 109: 12219-12224.
  59. Yamada, T., Takatsu, Y., Manabe, T., Kasumi, M. and Marubashi, W. (2003). Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Sci., 164: 213–221.
  60. Yang, W.J., Rich, P.J., Axtell, J.D., Wood, K.V., Bonham, C.C., Ejeta, G., Mickel, B.M.V. and Rhodes, D. (2003). Genotypic variation for glycinebetaine in sorghum. Crop Sci., 43: 162–169.
  61. Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J., 30: 529–539.
  62. Zhang, H.J., Dong, H.Z., Li, W.J. and Zhang, D.M. (2012). Effects of soil salinity and plant density on yield and leaf senescence of field-grown cotton. Agronomy & Crop Science, 198: 27–37.
  63. Zhou, Y.H., Wu, J.X., Zhu, L.J., Shi, K. and Yu, J.Q. (2009). Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants. Biol. Plant., 53: 378-382.
  64. Zhu, J. and Meinzer, F.C. (1999). Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Austral. J. Plant Physiol., 26: 79–86.
  65. Zhu, J.K., Bressan, R.A., Hasegawa, P.M., Pardo, J.M. and Bohnert, H.J. (2005). Salt and crops: salinity tolerance. News CAST: News from the Council for Agricultural Science and Technology, 32: 13–16.

Global Footprints