ROLE OF GRAFTING IN CUCURBITACEOUS CROPS- A REVIEW

DOI: 10.5958/j.0976-0741.35.1.003    | Article Id: R-1344 | Page : 24-33
Citation :- ROLE OF GRAFTING IN CUCURBITACEOUS CROPS- A REVIEW.Agricultural Reviews.2014.(35):24-33
Pradeep Kumar Singh and K. Mallikarjuna Rao
Address : Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Science and Technology Shalimar, Srinagar-191 121, India

Abstract

Due to limited availability of arable land and high market demand for off-season vegetables, cucurbits (plants in the family Cucurbitaceae) are continuously cultivated under unfavorable conditions in some countries. These conditions include environments that are too cold, wet, or dry, or are cool low-light winter greenhouses. Successive cropping can increase salinity, the incidence of cucurbit pests, and soil borne diseases like fusarium wilt caused by Fusarium spp. These conditions cause various physiological and pathological disorders leading to severe crop loss. Chemical pest control is expensive, not always effective, and can harm the environment. Grafting can overcome many of these problems. Some seed companies now offer watermelon transplants grafted on to squash or bottle gourd rootstocks, and some transplant facilities offer grafting services.

Keywords

Cucurbitaceous Economic feasibility Grafting.

References

  1. Andrews, P.K. and Marquez C.S. (1993). Graft incompatibility. Hort. Rev. 15: 183–232.
  2. Cappelli, C., Stravato, V.M., Carannante G. and Parisella R. (2004). First report of cucumber black root rot caused by Phomopsis sclerotiodes in Italy. Plant Dis. 88: 425.
  3. Davis, A.R. and King S.R. (2005).Watermelon stand survival after transplant varies with environmental conditions. Cucurbit Genet. Coop. Rpt. 28–29: 35–38.
  4. Fujii, T. (1970). Grafting seedling culture. Progress History of Agricultural Techniques after World War II. 4: 136–140.
  5. Golecki, B., Schulz, A., Carstens-Behrens U. and Kollmann R. (1998). Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206 : 630–640.
  6. Hang, S.D., Zhao, Y.P., Wang, G.Y. and Song, G.Y. (2005). Vegetable Grafting, China Agriculture Press, Beijng, China.
  7. Horvath, I., Vigh, L., Hasselt, P.R.V., Woltjecs, J. and Kuiper, P.J.C. (1983). Lipid composition in leaves of cucumber genotypes as affected by different temperature regimes and grafting. Physio. Plant 57: 532–536.
  8. Hu, C.M., Zhu, Y.L., Yang, L.F., Chen S.F. and Huang Y.M. (2006). Comparison of photosynthetic characteristics of grafted and own-root seedling of cucumber under low temperature circumstances. Acta Bot. Boreali-Occidentalia Sinica. 26: 247–253.
  9. Imazu, T. (1949). On the symbiotic affinity caused by grafting among Cucurbitaceous species. J. Jpn. Soc. t-Ioi-t. Sci. 18: 6-42.
  10. Ito, L.A., Charlo., Oliveira, H.C.D., Renata, C., Braz., Trevizan, L., Camargo. and Margarete. (2009). Rootstocks Seletion to grummy stem blight resistance and their effect on the yield of melon ‘Bonus Nº 2’. Brazilian Magazine of Fruit Culture. 31(1): 262-267.
  11. Kato, T. and Lou H. (1989). Effect of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. J. Japan Soc. Hort. Sci. 58: 345–352.
  12. Kurata, H. (1976). Grafting in Melon and Watermelon. Noubunkyo (ed.), Yasai Zensyo, Kluwer Academic Publishers, Noubunkyo, Japan pp: 416–425.
  13. Lee, J.M., Bang H.J. and Ham H.S. (1998). Grafting of vegetables. J. Japan Soc. Hort. Sci. 67: 1098–1114.
  14. Lee, J.M. and M Oda. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort.Rev. (Amer. Soc. Hort. Sci.) 28: 61-124.
  15. Liao, C. T. and Lin C. H. (1996). Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ. and Expt. Bot. 36: 167–172.
  16. Liu, H.Y., Zhu, Z.J., Lu G.H. and Qian Q.Q. (2003a). Study on relationship between physiological changes and chilling tolerance in grafted watermelon seedlings under low temperature stress. Scientia Agriculturae Sinica 36: 1325–1329.
  17. Muramatsu, Y. (1981). Problems on vegetable grafting. Shisetu Engei. 10: 48–53.
  18. Oda, M. (1999). Grafting of vegetables to improve greenhouse production. Food and Fertilizer Tech. Center. www.agnet.org/ library/eb/480/ Accessed Dec. 7, 2007.
  19. Pulgar, G., Villora, G., Moreno D.A. and Romero L. (2000). Improving the mineral nutrition in grafted watermelon plants nitrogen metabolism. Biologia Plant. 43: 607–609.
  20. Robinson, R.W. and Decker-Walters D.S. (1997). Cultural Requirements, In: Cucurbits, pp. 113–143. R.W. Robinson and D.S. Decker-Walters, Eds., CAB International, Wallingford, UK.
  21. Romero, L., Belakbir, A., Ragala L. and Ruiz M. (1997). Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 43: 855–862.
  22. Sakata, Y., Takayoshi O. and Mitsuhiro S. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort. 731: 159–170.
  23. Salam, M.A., Masum, A.S.M.H., Chowdhury, S.S., Dhar, M., Saddeque A. and Islam M.R. (2002). Growth and yield of watermelon as influenced by grafting. OnLine J. Biol. Sci. 2: 298–299.
  24. Satoh, S. (1996) Inhibition of flowering of cucumber grafted on rooted squash stocks. Physiol. Plant. 97: 440–444.
  25. Seong, K.C., Moon, J.M., Lee, S.G., Kang, Y.G., Kim K.Y. and Seo H.D. (2003). Growth, lateral shoot development, and fruit yield of white-spined cucumber (Cucumis sativus cv. Baekseong-3) as affected by grafting methods. J. Kor. Soc. Hort. Sci. 44: 478–482.
  26. Shishido, M., Yoshida, N., Usami, T., Shinozaki, T., Kobayashi M. and Takeuchi T. (2006). Black root rot of cucurbits caused by Phomopsis sclerotioides in Japan and phylogenetic grouping of the pathogen. J. General Plant Path. 72: 220–227.
  27. Taylor, M., Bruton, B., Fish W. and Robert W. (2006). Cost benefit analyses of using grafted watermelons for disease control and the fresh-cut market. Cucurbitaceae2006. pp 277–285.
  28. Tiedemann, R. and Behrens U.C. (1994). Influence of grafting on the phloem protein patterns in Cucurbitaceae, Additional phloem exudates proteins in Cucumis sativus grafted on two Cucurbita species. J. Plant Physiol. 143: 189–194.
  29. Xu, C.Q., Li T.L. and Qi H.Y. (2006). Effects of grafting on development, carbohydrate content, and sucrose metabolizing enzymes activities of muskmelon fruit. Acta Hort. Sinica 33: 773–778.
  30. Xu, S.L., Chen, Q.Y., Li, S.H., Zhang, L.L., Gao J.S. and Wang H.L. (2005). Roles of sugar metabolizing enzymes and GA3, ABA in sugars accumulation in grafted muskmelon fruit. J. Fruit Sci. 22: 514–518.
  31. Yang, L.F., Zhu, Y.L., Hu, C.M., Liu Z.L. and Zhang G.W. (2006). Effects of NaCl stress on the contents of the substances regulating membrane lipid oxidation and osmosis and photosynthetic characteristics of grafted cucumber. Acta Botanica Boreali-occidentalia Sinica, 2: 1195–1200.
  32. Zhu, J., Bie, Z.L., Huang Y. and Han X.Y. (2006). Effects of different grafting methods on the grafting work efficiency and growth of cucumber seedlings. China Veg. 9: 24–25.

Global Footprints