Horticultural Agroforestry Systems Recommended for Climate Change Adaptation: A Review

DOI: 10.18805/ag.R-133    | Article Id: R-133 | Page : 14-24
Citation :- Horticultural Agroforestry Systems Recommended for Climate Change Adaptation: A Review.Agricultural Reviews.2020.(41):14-24
O. Montes Colmenares, R. Castro Brindis, C. Villanueva Verduzco, M. Pérez Grajales, M. Uribe Gómez Montes.horticulture@outlook.com
Address : Agroforestería para el Desarrollo Sostenible. Universidad Autónoma Chapingo. Estado de México, 56230, México. 
Submitted Date : 2-11-2019
Accepted Date : 3-03-2020

Abstract

High input costs, environmental degradation and climate change have generated new challenges in the agriculture, horticulture and forestry sector. The objective of this paper is to identify the main horticultural agroforestry systems useful for climate change adaptation and mitigation. Agri-horticulture, Horti-olericulture, Silvi-olericulture, Horti-pasture, Horti/Silvo-medicinal, Horti/Silvo-ornamental, Horti-silviculture, Horti-entomoforestry and Horti-Pisciculture are horticultural agroforestry systems recommended. Agroforestry systems in comparison with monoculture systems, have better use of water, soil and light, can help reduce the application of herbicides, fungicides, pesticides, fertilizers, increasing food security, biodiversity protection and climatic change adaptation. We recommended national politics, subsidies, technical support and credits for global farmers. 

Keywords

Annual vegetable Fruit tree Medicinal crop Ornamental crop

References

  1. Abbas, F., Hammad, H., Fahad, S., Cerdà, A., Rizwan, M., Farhad, W., Ehsan, S. Bakhat, H. (2017). Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a Review. Environmental Science and Pollution Research. 24: 11177–11191. DOI: 10.1007/s11356-017-8687-0.
  2. Abul-Soud, M., Emam, M., Abdrabbo, M. (2014). Intercropping of some brassica crops with mango trees under different net house color. Research Journal of Agriculture and Biological Sciences. 10: 70–79.
  3. Acquaah, M. (2009). Effect of Gliricidia sepium and Senna siamea prunings on the growth and root yield of cassava. Kwamw Nkrumah University of Science and Technology, Kumasi.
  4. Aiyelaagbe, I. and Jolaoso, M. (1992). Growth and yield response of papaya to intercropping with vegetable crops in southwestern Nigeria. Agroforestry Systems. 19: 1–14. DOI:https://doi.org/10.1007/BF00130090
  5. Akondé, T., Steinmüller, N., Leihner, D. (1997). Alley cropping on an Ultisol in subhumid Benin Part 3: nutrient budget of maize, cassava and trees. Agroforestry Systems. 37: 213-226. DOI: https://doi.org/10.1023/A:1005863818511
  6. Alemu, T. and Mengistu, A. (2019). Impacts of climate change on food security in Ethiopia: adaptation and mitigation options: A Review. In: Sustainability of Agricultural Environment in Egypt. 397–412. DOI: 10.1007/978-3-319-75004-0_23
  7. Altieri, M., Farrell, J., Hecht, S. (2018). Toward sustainable agriculture. In: Agroecology. The Science of Sustainable Agriculture, p.13.
  8. Amara, D., Sanginga, N., Danso, S., Suale, D. (1996). Nitrogen contribution by multipurpose trees to rice and cowpea in an alley cropping system in Sierra Leone. Agroforestry Systems. 34: 119–128. DOI: https://doi.org/10.1007/BF00148156
  9. Asati, B., Tomar, J., Asati P (2007). Agrihorticulture develoment in north eastern region. Himalayan Ecology. 15: 22-30.
  10. Ashraf, M., Zulkifli, R., Sanusi, R., Tohiran, K., Terhem, R., Moslim, R., Norhisham, A., Ashton, A., Azhar, B. (2018). Alley-    cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agriculture, Ecosystems and Environment. 260: 19–26. DOI: https://doi.org/10.1016/j.agee.2018.03.017 
  11. Atayese, M., Awotoye, O., Osonubi, O., Mulongoy, K. (1993). Comparisons of the influence of vesicular-arbuscular mycorrhiza on the productivity of hedgerow woody legumes and cassava at the top and the base of a hillslope in alley cropping systems. Biology and Fertility of Soils. 16: 198-204. DOI: https://doi.org/10.1007/BF00361408
  12. Balasubramanian, V. and Egli, A. (1986). The role of agroforestry in the farming systems in Rwanda with special reference to the Bugesera-Gisaka-Migongo region. Agrofororestry. Systems. 4: 271–289. DOI: https://doi.org/10.1007/BF00048104
  13. Barreto, A. and Fernandes, M. (2001). Cultivo de Gliricidia sepium e Leucaena leucocephala em alamedas visando a melhoria dos solos dos tabuleiros costeiros. Pesquisa Agropecuária Brasileira. 36: 1287-1293. DOI: https://doi.org/10.1590/S0100-204X2001001000011
  14. Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K., Mortimer, P., Okubo, S. (2017). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services and Management. 14: 1-16. DOI: https://doi.org/10.1080/21513732.2017.1399167 
  15. Bayard, B., Jolly, C., Shannon, D. (2007). The economics of adoption and management of alley cropping in Haiti. Journal of Environmental Management. 84: 62–70. DOI: 10.1016/j.jenvman.2006.05.001
  16. Behera, S., Mahapatra, A., Mishra, P., Pattanayak, S. Panda, D. (2016). Performance of bamboo based agri-silvicultural systems in North Odisha, India. International Journal of Bio-Resource and Stress Management. 7: 218-221. DOI: 10.23910/IJBSM/2016.7.2.1542
  17. Bellow, J., Nair, P., Martin, T. (2008). Tree–Crop Interactions in fruit tree-based agroforestry systems in the western highlands of Guatemala: Component Yields and System Performance. In: Toward Agroforestry Design. Advances in Agroforestry, vol 4. [Jose S., Gordon A. (eds)] Springer, 111–131. DOI: https://doi.org/10.1007/978-1-4020-6572-9_8
  18. Bhardwaj, D., Navale, M. Sharma, S. (2017). Agroforestry practices in temperate regions of the world. Agroforestry, Springer Singapore, pp.163–187. DOI: https://doi.org/10.1007/    978-981-10-7650-3_6
  19. Bhatt, B., Sachan, M., Singh, K. (2006). Production potential of traditional agroforestry systems of Meghalaya: a case study. In Agroforestry in North East India: Oportunities and Challengues. Eds. B. Bahatt and K. Bujarbaruah. 337-349.
  20. Bheemaiahi, G. and Subrahmanyam, V. (2004). Effect of green-    leaf manuring on productivity of sunflower (Helianthus annuus) under guava (Psidium guajava)-based agrihorticultural system. Indian Journal of Agricultural Science.74(10): 515-520.
  21. Bhoyar, S., Deshmukh, H., Mahajan, R., Sharma, N. (2016). Traditional agroforestry systems practiced in lower hills of Melghat region, Chikhaldara tehsil, Maharashtra, India. Bioved. 27: 131–140.
  22. Bhutia, P., Thakur, C., Sarvade, S., Bhardwaj, D., Kaushal, R., Bhutia, K. (2015). Varietal performance of pea (Pisum sativum L.) under peach based agroforestry system in mid hill conditions of Himachal Pradesh. Indian Journal of Agrofororestry. 17: 14–17.
  23. Blair, W., Wu, X., Bhandari, D., Zhang, X., Hao, J., Devendra, B., Zhang, X., Junjie, H. (2016). Role of legumes for and as horticultural crops in sustainable agriculture. Organic Farming for Sustainable Agriculture. 185–211. DOI: https://doi.org/10.1007/978-3-319-26803-3_9
  24. Böhringer, A. and Leihner, D. (1996). A comparison of alley cropping and block planting systems in sub-humid Bénin. Agroforestry Systems. 35: 117–130. DOI: https://doi.org/10.1007/BF00122773
  25. Boreux, V., Kushalappa, C., Vaast, P. (2013). Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems. Proceedings of the National Academy of Sciences of the United States of America. 110: 8387–8392. DOI: https://doi.org/10.1073/pnas.1210590110
  26. Borland, A., Wullschleger, S., Weston, D., Hartwell, J., Tuskan, G., Yang, X. Cushman, J. (2015). Climate-resilient agroforestry: Physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. Plant, Cell andamp; Environment. 38: 1833–1849. DOI: https://doi.org/10.1111/pce.12479
  27. Buyinza, J., Muthuri, C., Downey, A., Njoroge, J., Denton, M., Nuberg, I. (2019). Contrasting water use patterns of two important agroforestry tree species in the Mt Elgon region of Uganda. Australian Forestry. 1–9. DOI: https://doi.org/10.1080/00049158.2018.1547944
  28. Castro, P., Azul, A., Filho, W., Azeiteiro, U. (2019). Climate Change-Resilient Agriculture and Agroforestry.
  29. Chang, S., Wang W., Zhu, Z. (1997). Temperate agroforestry in China. Temperate Agroforestry Systems. CAB International, pp.149–179. 
  30. Charbonnier, F., Roupsard, O., le Maire, G., Guillemot, J. (2017). Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant, Cell andamp; Environment. 40: 1592-1608. DOI: https://doi.org/10.1111/pce.12964
  31. Chaturvedi, O., Dagar, J., Handa, A., Kaushal, R., Pandey, V. (2018). Agroforestry Potential for Higher Productivity from Degraded Ravine Watersheds. Ravine Lands: Greening for Livelihood and Environmental Security, Springer, Singapore, 335–360. DOI: https://doi.org/10.1007/978-981-10-8043-    2_14
  32. Chauhan, K. (2016). Effect of tree leaf mulch on pearl millet (Pennisetum glaucum) in guava (Psidium guajava) based agri-horti system in Vindhyan. Thesis. Institute of Agricultural Sciences, Banaras Hindu University, Varanasi.
  33. Chouchane, H., Krol, M., Hoekstra, A. (2018). Expected increase in staple crop imports in water-scarce countries in 2050. Water Research X, 1-100001. DOI: https://doi.org/10.1016/j.wroa.2018.09.001
  34. Dagar, J. and Tewari, J. (2016). Agroforestry research developments: anecdotal to modern science. In: Agroforestry Research Developments, NOVA, 1–45.
  35. Das, B., Dhakar, M., Sarkar, P., Kumar, S. (2017). Performance of mango (Mangifera indica) based agri-horticultural systems under rainfed plateau conditions of eastern India. Indian Journal of Agricultural Sciences. 87: 521-527.
  36. Das, S.K., Sharma, S., Sharma, K., Saharan, N., Nimbole, N., Reddy, Y. (1993). Land use options on a semi-arid Alfisol. American Journal of Alternative Agriculture. 8: 34–39. DOI: https://doi.org/10.1017/S0889189300004902
  37. De Giusti, G., Kristjanson, P., Rufino, M. (2019). Agroforestry as a climate change mitigation practice in smallholder farming: evidence from Kenya. Climatic Change. 153: 379–394. DOI: https://doi.org/10.1007/s10584-019-02390-0
  38. Dhakar, M., Sharma, B., Prajapat, K. (2013). Fruit crop-based cropping system: a key for sustainable production. Popular Kheti. 1: 39–45.
  39. Dhara, P., Panda, S., Sarkar, S., Sarkar, S., Das, N. (2017). Agroforestry Systems Practised in New Alluvial Zone of West Bengal. International Conference on Agriculture, Food Science, Natural Resource Management and Eviromental Dynamics: Thetechnology, the People and Suistainable Development, New Delhi. 162-164.
  40. Dhillon, W., Chauhan, S., Jabeen, N., Singh, C., Singh, N. (2012). Growth performance of intercropping system components and nutrient status of soil under horti-silvicultural system. International Journal of Environment and Resource. 1: 31–38.
  41. Dhillon, W., Chohan, S., Singh, N., Rattan, C., Singh, D. (2010). Pre-bearing behaviour of some fruit crops under horti-silviculture system. Indian Journal of Horticuture. 67: 311-314.
  42. Dhyani, S., Handa, A., Handa, A. (2013). Agroforestry in India and its potential for ecosystem services. Agroforestry Systems in India: Livelihood Security and Ecosystem, 345–365. DOI: https://doi.org/10.1007/978-81-322-1662-9_11
  43. Dubey, S., Sharma, N., Sharma, J., Sharma, A., Kishore, N. (2016). Assessing citrus based intercropping in the irrigated areas of northern plains of Haryana. Indian Journal of Horticulture. 73: 441–444. DOI: 10.5958/0974-0112.2016.00094.3
  44. Ernst, S. (1994). Potential of alley cropping maize and cassava in south Benin, West Africa: evaluation of the establishing-    phase. In: Potential of Alley Cropping Maize and Cassava in South Benin, West Africa: Evaluation of the Establishingphase.160.
  45. Evensen, C., Dierolf, T., Yost, R. (1995). Decreasing rice and cowpea yields in alley cropping on a highly weathered Oxisol in West Sumatra, Indonesia. Agroforestry Systems. 31: 1–19. DOI: https://doi.org/10.1007/BF00712052
  46. Fanish, S. and Priya, S. (2013). Review on benefits of agro forestry system. International Journal of Education and Research. 1: 1-12.
  47. Feliciano, D., Ledo, A., Hillier, J., Nayak, D. (2018). Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agriculture, Ecosystems and Environment. 254: 117–129. DOI: https://doi.org/10.1016/j.agee.2017.11.032
  48. Fleming, A., O’Grady, A., Mendham, D., England, J., Mitchell, P., Moroni, M., Lyons, A. (2019). Understanding the values behind farmer perceptions of trees on farms to increase adoption of agroforestry in Australia. Agronomy for Sustainable Development. 39:(1): pp. 9. DOI: https://doi.org/10.1007/s13593-019-0555-5
  49. Ghuman, B., Lal, R., Shearer, W. (1991). Land clearing and use in the humid Nigerian tropics: i. soil physical properties. Soil Science Society of America Journal. 55: 178-183. DOI: doi:10.2136/sssaj1991.03615995005500010031x
  50. Gogoi, B. (2015). Soil productivity management and socio-economic developmen through agroforestry in north-east India. Asian Journal of Science and Technology. 6: 2048–2053.
  51. Grajales, J., Meléndez, V., Leopoldo, C., Sánchez, D. (2013). Native bees in blooming orange and lemon orchards in Yucatán, Mexico. Acta Zoológica Mexicana. 29: 437–440.
  52. Groeneweg, D., Vischedijk, F., Appelman, J., Buiten, G. van, San Giorgi, X., Hautier, Y. (2018). Polycultures in agroforestry. 4th European Agroforestry Conference Agroforestry as Sustainable Land Use, Nijmegen, Netherlands 452–456.
  53. Gunaga, R. (2017). Crop biomass and yield patterns of dominant agroforestry systems of Navsari district, Gujarat, India. Indian Journal of Agroforestry. 19: 72–78.
  54. Handa, A. and Dhyani, S. (2015). Three decades of agroforestry research in India: Retrospection for way forward. Agricultural Research Journal. 52: 1–10. DOI: 10.5958/2395-146X.2015.00028.9
  55. Handa, A. and Newaj, R. (2017). Agroforestry systems and technologies for diferent agro-climatic regions of India. In: Forestry Technologies: A Complete Value Chain Approach. [T. Parthiban (ed.)], 177–193.
  56. Handa, A., Toky, O., Dhyani, S., Chavan, S., Toky, O. (2016). Innovative agroforestry for livelihood security in India. World Agriculture. 7: 7–16.
  57. Harrison, S. and Harrison, R. (2016). Financial modelling of mixed-species agroforestry systems in Fiji and Vanuatu, based on traditional tree species. In: Smallscale and Community Forestry and the Changing Nature of Forest Landscapes, Australia.
  58. Hasan, M., Ahmed, M., Miah, M. (2008). Agro-economic performance of jackfruit-pineapple agroforestry system in madhupur tract. Journal of Agriculture and Rural Development. 6: 147–156. DOI: https://doi.org/10.3329/jard.v6i1.1672
  59. He, S., Luo, Z., Hua, M., Wang, X., Li, X., He, F., Fan, H. (2012). Study on young rubber/Tainong NO. 16 pineapple intercropping pattern. Guangdong Agricultural Sciences. 13: 16.
  60. Hong, Y., Heerink, N., Jin, S., Berentsen, P., Zhang, L., van der Werf, W. (2017). Intercropping and agroforestry in China–    Current state and trends. Agriculture, Ecosystems and Environment. 244: 52–61. DOI: https://doi.org/10.1016/    j.agee.2017.04.019
  61. Hymavathi, H., Kandya, A., Patel, L. (2010). Beneficial effects of multiple plantation patterns in agroforestry systems. Indian Forester. 136: 465–475.
  62. Iijima, M., Izumi, Y., Yuliadi, E., Sunyoto, Afandi, Utomo, M. (2003). Erosion control on a steep sloped coffee field in indonesia with alley cropping, intercropped vegetables and no-    tillage. Plant Production Science. 6: 224–229. DOI: https://doi.org/10.1626/pps.6.224
  63. Jalón, S. de, Graves, A., Palma, J., Upson, M., Williams, A., Burgess, P. (2018). Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study. Agroforestry Systems. 92: 1059-1073. DOI: https://doi.org/10.1007/s10457-0170128-z
  64. Jamar, L., Rondia, A., Lateur, M., Minet, L., Froncoux, A., Stilmant, D. (2016). Co-design and establishment of innovative fruit-based agroforestry cropping systems in Belgium. Acta Horticulturae. 1137: 347-350. DOI: 10.17660/ActaHortic.2016.1137.48
  65. Jha, S. and Vandermeer, J. (2010). Impacts of coffee agroforestry management on tropical bee communities. Biological Conservation. 143: 1423–1431. DOI: https://doi.org/10.1016/j.biocon.2010.03.017
  66. Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems. 76: 1–10. DOI: https://doi.org/10.1007/s10457-009-9229-7
  67. Jose, S., Allen, S., Nair, P. (2008). Tree-crop interactions: lessons from temperate alley-cropping systems. In: D. Rani R. Kumar S. Jose, H. Singh (eds.), Ecological Basis of Agroforestry. Taylor and Francis Group, U.S.A., 15–36.
  68. Jose, S., Gillespie, A., Pallardy, S. (2004). Interspecific interactions in temperate agroforestry. Agroforestry Systems. 61: 237–    255. DOI: https://doi.org/10.1023/B:AGFO.0000029002.85273.9b
  69. Juárez, D. and Fragoso, C. (2014). Comunidades de lombrices de tierra en sistemas agroforestales intercalados, en dos regiones del centro de México. Acta zoológica Mexicana. 30: 637–654.
  70. Kanmegne, J. and Degrande, A. (2002). From alley cropping to rotational fallow: Farmers’ involvement in the development of fallow management techniques in the humid forest zone of Cameroon. Agroforestry Systems. 54: 115-120. DOI: https://doi.org/10.1023/A:1015095320293
  71. Karshie, E., Ajayi, O., Gideon, P., Bulus, J. and Mtomga, N. (2017). Farmers’ Participation in Agroforestry Practices in Taraba State, Nigeria: An Analysis of Benefits. Greener Journal of Agricultural Science. 7: 182–188.
  72. Kass, D., Araya, J., Perreira, P., Sanchez, J. (1995). Ten years experience with alley farming in Central America. International Alley Farming Conference, Ibadan, Nigeria.
  73. Khaki, B., Wani, A., Bhardwaj, D. (2016). Soil Carbon Sequestration under Different Agroforestry Land Use Systems. Indian Forester. 142: 734-738.
  74. Kimaro, A., Sererya, O., Matata, P., Uckert, G., Hafner, J., Graef, F., Sieber, S., Rosenstock, T. (2019). Understanding the Multidimensionality of Climate-Smartness: Examples from Agroforestry in Tanzania. In: The Climate-Smart Agriculture Papers, Springer . 53–162. DOI: https://doi.org/10.1007/978-3-319-92798-5_13
  75. Klein, A., Steffan-Dewenter, I., Buchori, D., Tscharntke, T. (2002). Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conservation Biology. 16: 1003–1014. DOI: https://doi.org/10.1046/j.1523-1739.2002.00499.x
  76. Korwar, G. and Pratibha, G. (2005). Existing and improved agroforestry systems in low rainfall areas of India. Sustainable Agriculture Systems for the Drylands. 3: 11-23.
  77. Krishnan, T. (2016). Effect of inorganic and organic fertilizer on growth and yeild of green gram (Vigna radiata) under guava (Psidium guajava) based agri-horti system, Thesis. Banaras Hindu University, Varanasi.
  78. Kumar, B., Kumar, A., Dhyani, S. (2012). South Asian Agroforestry: Traditions, Transformations and Prospects. In: Nair P., Garrity D. (eds) Agroforestry - The Future of Global Land Use. Advances in Agroforestry, Springer, Dordrecht. 359–    389. DOI: https://doi.org/10.1007/978-94-007-4676-3_19
  79. Kumar, M., Kumar, S., Uthappa, A., Kalappurakkal, S. (2018). Influence of Prosopis cineraria L. on microclimate conditions under agroforestry system in arid region of India. Indian Journal of Agroforestry. 20: 35-39.
  80. Kumar, S., Shukla, A., Singh, H., Ahmed, A., Rai, A. (2016). Sustainable production of guava based hortipasture system with different in situ soil and moisture conservation in semi-    arid region of India In: International. International Grassland Congress, New Delhi.
  81. Lallianthanga, R., Colney, L., Sailo, R. (2014). A Remote Sensing and GIS approach for Land use Planning in Lunglei District, Mizoram, India. International Journal of Engineering Sciences and Research Technology. 2: 29–34.
  82. Lasco, R., Espaldon, M., Habito, C. (2016). Smallholder farmers’ perceptions of climate change and the roles of trees and agroforestry in climate risk adaptation: evidence from Bohol, Philippines. Agroforestry Systems. 90: 521–540. DOI: https://doi.org/10.1007/s10457-015-9874-y
  83. Lawson, G., Dupraz, C., Watté, J. (2018). Can silvoarable systems maintain yield, resilience and diversity in the face of changing environments? Agroecosystem Diversity. 145–    168. DOI: https://doi.org/10.1016/B978-0-12-811050-    8.00009-1
  84. Leihner, D., Ernst, R., Akondé, T., Steinmuller, N., Steinmüller, N. (1996). Alley cropping on an Ultisol in subhumid Benin. Part 2: Changes in crop physiology and tree crop competition. Agroforestry Systems. 34: 13–25. DOI: https://doi.org/    10.1007/BF00129629
  85. Lose, S., Hilger, T., Leihner, D., Kroschel, J. (2003). Cassava, maize and tree root development as affected by various agro-
  86. -forestry and cropping systems in Benin, West Africa. Agriculture, Ecosystems and Environment. 100: 137–151. DOI: https://doi.org/10.1016/S0167-8809(03)00182-8
  87. Maheswarappa, H., Palaniswami, C., Dhanapal, R., Subramanian, P. (2010). Coconut based intercropping and mixed cropping systems. Coconut Based Cropping/Farming Systems, 9-31.
  88. Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., MakowskI, D., Ozier, H., Rapidel, B., de Tourdonnet, S. (2009). Mixing plant species in cropping systems: concepts, tools and models: a review. In: Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (eds) Sustainable Agriculture. Springer. 329–353. DOI: https://doi.org/10.1007/978-90-    481-2666-8_22 
  89. Malhotra, S. (2017). Horticultural Crops and Climate Change-A Review. Indian Journal of Agricultural Sciences. 87: 12–22.
  90. Mauricio, R., Ribeiro, R., Paciullo, D., Cangussú, M., Murgueitio, E., Chará, J., Estrada, M. (2019). Silvopastoral systems in latin america for biodiversity, environmental and socioeconomic improvements. Agroecosystem Diversity. 287–    297. DOI: https://doi.org/10.1016/B978-0-12-811050-    8.00018-2
  91. Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P., Kowero, G. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. Current Opinion in Environmental Sustainability. 6: 61–    67. DOI: https://doi.org/10.1016/j.cosust.2013.10.014.
  92. Mirjha, P. and Rana, D.(2016). Yield and yield attributes, system productivity and economics of mango (Mangifera indica)-    based intercropping systems as influenced by mango cultivars and nutrient levels. Indian Journal of Agronomy. 61: 307–314.
  93. Monteith, J. Ong, C., Corlett, J.(1991). Microclimatic interactions in agroforestry systems. Forest Ecology and Management. 45: 31–44. DOI: https://doi.org/10.1016/0378-1127(91)90204-9
  94. Moura, A., Aguiar, A., Agostini, T., Moura, E. (2017). Food quantity and quality of cassava affected by leguminous residues and inorganic nitrogen application in a soil of low natural fertility of the humid tropics. Bragantia, 76: 406–415. DOI: https://doi.org/10.1590/1678-4499.007
  95. Murray, G. and Bannister, M. 2004). Peasants, agroforesters and anthropologists: A 20-year venture in income-generating trees and hedgerows in Haiti. Agroforestry Systems. 61–    62:383–397. DOI: https://doi.org/10.1023/B:AGFO.0000029012.28818.0c
  96. Nair, P., Kumar, B., Nair, V. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science. 172: 10–23. DOI: https://doi.org/10.1002/jpln.200800030
  97. Nedunchezhiyan, M., Jata S., Gangadharan B. (2012). Sweet potato-based cropping systems. Fruit, Vegetable and Cereal Science and Biotechnology. 6: 11–16.
  98. Nerlich, K., Graeff-Hönninger, S. and Claupein, W. (2013). Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforestry Systems. 87: 475–492. DOI: https://doi.org/    10.1007/s10457-012-9560-2
  99. Niether, W., Schneidewind, U., Fuchs, M., Schneider, M., Armengot, L. (2019). Below- and aboveground production in cocoa monocultures and agroforestry systems. Science of The Total Environment. 657: 558–567. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.050
  100. Nissen, T. and Midmore, D. (2002). Stand basal area as an index of tree competitiveness in timber intercropping. Agroforestry Systems. 54: 51–60. DOI: https://doi.org/10.1023/A:1014273304438
  101. Nolte, C., Tiki, T., Badjel, S., Gockowski, J. (2005). Groundnut, maize and cassava yields in mixed-food crop fields after calliandra tree fallow in southern Cameroon. Experimental Agriculture. 41: 21–37. DOI: https://doi.org/10.1017/S0014479704002145
  102. Oelbermann, M., Voroney, P., Kass, D., Voroney, R., Kass, D. Voroney, P., Kass, D. (2004). Gliricidia sepium Carbon Inputs and Soil Carbon Pools in a Costa Rican Alley Cropping System. International Journal of Agricultural Sustainability. 2: 33–42. DOI: https://doi.org/10.1080/    14735903.2004.9684565
  103. Okon, I. (2011). Tree pruning regimes on three cassava genotypes. Insight Botany. 1: 39–44. DOI: 10.5567/BOTANY-IK.2011.39.44
  104. Osonubi, O., Atayese, M., Mulongoy, K. (1995). The effect of vesicular-arbuscular mycorrhizal inoculation on nutrient uptake and yield of alley-cropped cassava in a degraded Alfisol of southwestern Nigeria. Biology and Fertility of Soils. 20: 70–76. DOI: https://doi.org/10.1007/BF00307844.
  105. Ouma, G. and Jeruto, P. (2010). Sustainable horticultural crop production through intercropping: The case of fruits and vegetable crops: A review. Agriculture and Biology Journal of North America. 1: 1098–1105. DOI: 10.5251/abjna.2010.1.5.1098.1105
  106. Pande, V., Kurothe, R., Kumar, G., Singh, H., Tiwari, S. (2018). Economic assessment of agri-horticulture production systems on reclaimed ravine lands in Western India. Agroforestry Systems. 92: 195–211. DOI: https://doi.org/10.1007/s10457-016-0025-x
  107. Pardon, P., Reubens, B., Mertens, J, Verheyen, K., De Frenne, P., De Smet, G. (2018). Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems. 166: 135–151. DOI: https://doi.org/10.1016/j.agsy.2018.08.008
  108. Pareek, O. and Awasthi, O. (2008). Horticulture-based farming systems for arid region. Diversification of Arid Farming System. 12–22.
  109. Paul, C., Weber, M., Knoke, T. (2017). Agroforestry versus farm mosaic systems – Comparing land-use efficiency, eco-    -nomic returns and risks under climate change effects. Science of The Total Environment. 587–588: 22–35. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.037
  110. Paut, R., Sabatier, R., Tchamitchian, M. (2018). Benefits of diversified horticultural systems: assessment with the modern portfolio theory. International Farming Systems Association (IFSA) Symposium, Farming Systems: Facing Uncertainties and Enhancing Opportunities, 1-5 July 2018, Chania, Crete, Greece (Pp. 1-9). International Farming Systems Association (IFSA) Europe.
  111. Pavlidis, G. and Tsihrintzis, V.(2018). Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a Review. Water Resources Management. 32: 1-29. DOI: https://doi.org/10.1007/    s11269-017-1805-4
  112. Raj, A, (2017). Sustainable agriculture with agroforestry: adoption to climate change. New India Publ. Agency (NIPA), New Delhi 287–293.
  113. Raj, A., Jhariya, M., Yadav, D., Banerjee, A. (2019). Agroforestry with Horticulture: A New Strategy Toward a Climate-    Resilient Forestry Approach. Agroforestry and Climate Change. 67–96.
  114. Rajasekharan, P. and Veeraputhran, S. (2002). Adoption of intercropping in rubber smallholdings in Kerala, India: a tobit analysis. Agroforestry Systems. 56: 1–11. DOI: https://doi.org/    10.1023/A:1021199928069
  115. Rajput, P. (2016). Carbon storage, soil enrichment potential and bio-economic appraisal of different land use systems in mid hill and sub-humid zone-II of Himachal Pradesh. 
  116. Rakhi, K. (2015). Comparative performance of different crops in open field and custard apple (Annona squamosa) based agri-horticultural system, Banaras Hindu University Varanasi-India.
  117. Rani, S., Benbi, D., Rajasekaran, A., Chauhan, S. (2016). Litterfall, decomposition and nutrient release patterns of different tree species in Taran Taran district of Punjab, India. J. Applied and Natural Science Foundation. 8: 1260-1266. DOI: https://doi.org/10.31018/jans.v8i3.951
  118. Rao, M., Palada, M., Becker, B., Becker, B. (2004). Medicinal and aromatic plants in agroforestry systems. New Vistas in Agroforestry. 107–122. DOI: https://doi.org/10.1007/978-    94-017-2424-1_8
  119. Re, G., Piluzza, G., Sanna, F., Molinu, M., Sulas, L. (2019). Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system. Journal of the Science of Food and Agriculture. 99: 191–198. DOI: https://doi.org/10.1002/    jsfa.9160
  120. Saha, R., Chaudhary, R., Somasundaram, J. (2012). Soil health management under hill agroecosystem of North East India. Soil Management for Sustainable Agriculture, 9. DOI: https://doi.org/10.1155/2012/696174
  121. Salami, A. and Osonubi, O. (2003). Influence of mycorrhizal inoculation and different pruning regimes on fresh root yield of alley and sole cropped cassava (Manihot esculenta) in Nigeria. Archives of Agronomy and Soil Science. 49: 317–323. DOI: https://doi.org/10.1080/0365034031000148390
  122. Salami, A., Odebode, A., Osonubi, O. (2005). The use of Arbuscular Mycorrhiza (AM) as a source of yield increase in sustainable alley cropping system. Archives of Agronomy and Soil Science. 51: 385–390. DOI: https://doi.org/10.1080/03650340500133175
  123. Sangwan, A., Dhillon, W., Chauhan, S., Singh, N., Bath, M. (2017). Performance of Garlic under Agri-Horti-Silvicultural System in Relation to Physiological Behaviour and Yield. Indian Journal of Ecology. 43: 724–729.
  124. Sangwan, A., Dhillon, W., Singh, H., Chohan, S., Gill, P. (2015). Influence of horti-silviculture combinations on pre-bearing growth and physiological parameters of pear. Indian Journal of Horticulture. 72: 21-27. DOI: 10.5958/0974-    0112.2015.00004.3
  125. Santos, P., Crouzeilles, R., Sansevero, J. (2019). Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forests. Forest Ecology and Management. 433: 140–145. DOI: https://doi.org/10.1016/j.foreco.2018.10.064
  126. Sereke, F., Graves, A., Dux, D., Palma, J., Herzog, F. (2014). Innovative agroecosystem goods and services: key profitability drivers in Swiss agroforestry. Agronomy for Sustainable Development. 35: 759–770. DOI: https://doi.org/10.1007/s13593-014-0261-2
  127. Shanker, C. and Solanki, K. (2000). Agroforestry: An ecofriendly land-use system for insect management. Outlook on Agriculture. 29: 91-96. DOI: https://doi.org/10.5367/000000000101293095
  128. Sharma, I., Singh, R., Tiwari, P., Sharma, P. (2017). Effect of different spacing and phosphorus levels on growth and yield parameters of mungbean under guava based Agrihorti System. Journal of Pharmacognosy and Phytochemistry. 993-996.
  129. Singh, A., Sharma, R., Chauhan, S., Arora, D. (2016). Microclimate and turmeric yield under different tree species. Journal of Agrometeorology. 18: 320–323.
  130. Singh, B. and Bhardwaj, D. (2014). Economic analysis of different land use systems in temperate North-Western Himalayas. Agri Bio Research Publishers. 19: 152–156.
  131. Singh, B. and Dwivedi, S. (2018). Horticulture-based Agroforestry Systems for Improved Environmental Quality and Nutritional Security in Indian Temperate Region. In: Agroforestry, Springer, Singapore, [T. V. Dagar J. (ed.)], 245–261. DOI: https://doi.org/10.1007/978-981-10-7650-3_9
  132. Singh, G. (1987). Alley farming in the semi-arid regions of India. Agroforestry a Decade of Development. pp.117–138.
  133. Smith, B.D., Pearce, B., Wolfe M. (2013). Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture and Food Systems. 28: 80–92. DOI: https://doi.org/10.1017/S1742170511000585
  134. Song, B., Wu, H., Kong, Y., Zhang, J., Du, Y., Hu, J., Yao, Y. (2010). Effects of intercropping with aromatic plants on the diversity and structure of an arthropod community in a pear orchard. BioControl. 55: 741–751. DOI: https://doi.org/10.1007/s10526-010-9301-2
  135. Sureshbhai, P., Thakur, N., Jha, S., Kumar, V. (2017). Productivity and carbon sequestration under prevalent agroforestry systems in Navsari District, Gujarat, India. International Journal of Current Microbiology and Applied Sciences. 6:3405–3422. DOI: https://doi.org/10.20546/ijcmas.2017.609.419
  136. Suvera, A., Thakur, N., Bioscan, S., Jha, K. (2015). Herbage and essential oil yield of Ocimum spp. Intercropped under Pongamia pinnata based silvi-medicinal systems in Gujarat, India. The Bioscan. 10: 81–85.
  137. Swain, S. (2016). Influence of intercropping systems on soil health, productivity and quality of guava (Psidium guajava) in Eastern India. Journal of Plant Nutrition. 39: 2037–2046. DOI: https://doi.org/10.1080/01904167.2016.1187751
  138. Thakur, P., Dutt, V., Sehgal, S., Kumar, R. (2005). Diversification and improving productivity of mountain farming systems through agroforestry practice in Northwestern India. AFTA 2005 Conference Proceedings
  139. Tiwari, P., Kumar, R., Thakur, L., Salve Scholar, A., Parmar, Y. (2017). Agroforestry for Sustainable Rural Livelihood/ : A Review. International Journal of Pure and Applied Bioscience. 5: 299–309. DOI: http://dx.doi.org/10.18782/2320-7051.2439
  140. Tonye, J., Duguma, B., Tiki, T. (1994). Stepwise approach to alley cropping technology development and transfer in the forest zone of Cameroon. Agroforestry Systems. 28: 269–    278. DOI: https://doi.org/10.1007/BF00704760
  141. Toppo, P. and Raj, A. (2018). Role of Agroforestry Systems in Climate Change Mitigation. Journal of Pharmacognosy and Phytochemistry. 7: 241-243.
  142. Tsuji, L., Wilton, M., Spiegelaar, N., Oelbermann, M., Barbeau, C., Solomon, A., Tsuji, C., Liberda, E., Meldrum, R., Karagatzides, J. (2019). Enhancing food security in subarctic canada in the context of climate change: The harmonization of indigenous harvesting pursuits and agroforestry activities to form a sustainable import-substitution strategy. Sustainable Solutions for Food Security, Springer. 409–    435. DOI: https://doi.org/10.1007/978-3-319-77878-5_20
  143. Udawatta, R., Gantzer, C. Jose, S. (2017). Agroforestry Practices and Soil Ecosystem Services. Soil Health and Intensification of Agroecosytems. 305-333. DOI: https://doi.org/10.1016/B978-0-12-805317-1.00014-2
  144. United Nations (2015). World Population Prospects: The Revision. Working Paper No. ESA/P/WP.241., New York.
  145. Upadhyay, M. and Yadava, M. (2009). Agroforestry System Practiced in Nepal. Tribhuvan University Institute of Forestry Office of the Dean Pokhara.
  146. Vaast, P., Harmand, J., Rapidel, B., Jagoret, P., Deheuvels, O. (2016). Coffee and cocoa production in agroforestry-A climate-smart agriculture model. Climate Change and Agriculture Worldwide, Springer Netherlands, 209–224. DOI: https://doi.org/10.1007/978-94-017-7462-8_16
  147. Verma, K. and Thakur, N.(2010). Economic analysis of Ashwagandha (Withania somnifera) based agroforestry land use system in mid hill Western Himalayas. Indian Journal of Agroforestry, 12: 62–70.
  148. Verma, P., Bijalwan, A., Dobriyal, M., Swamy, S., Thakur, T., Swamy, S. (2017). A paradigm shift in agroforestry practices in Uttar Pradesh. Current Science. 112: 509–516.
  149. Wang, Q., Xu, Z., Hu, T., Rehman, H., Chen, H., Li, Z., Ding, B., Hu, H. (2014). Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut–winter vegetable agroforestry system. Natural Product Research, 28: 2017–2020. DOI: https://doi.org/10.1080/14786419.2014.913245
  150. Weersum, K. (1982). Tree gardening and taungya on Java: examples of agroforestry techniques in the humid tropics. Agroforestry Systems. 1: 53–70. DOI: https://doi.org/10.1007/BF00044329
  151. Williams, P. and Gordon, A. (1992). The potential of intercropping as an alternative land use system in temperate North America. Agroforestry Systems. 19: 253–263. DOI: https://doi.org/10.1007/BF00118783
  152. Wilson, G., Kang, B., Mulongoy, K. (1986). Alley cropping: trees as sources of green-manure and mulch in the tropics. Biological Agriculture and Horticulture. 3: 251–267. DOI: https://doi.org/10.1080/01448765.1986.9754474 
  153. Workman, S., Allen, S., Jose, S. (2003). Agroforestry potential in the southeastern United States: perceptions of landowners and extension professionals. Agroforestry Systems. 59: 73–83. DOI: https://doi.org/10.1023/A:1026193204801
  154. Wu, J., Liu, W., Chen, C. (2016). Can intercropping with the world’s three major beverage plants help improve the water use of rubber trees? Journal of Applied Ecology. 53: 1787–    1799. DOI: https://doi.org/10.1111/1365-2664.12730
  155. Yadav, A. (2017). Effect of inorganic and organic fertilizer on growth and yield of black gram (Vigna mungo) under guava (Psidium guajava) based agri-horti system, Thesis. Institute of Agricultural Sciences, BHU. Varanasi.

Global Footprints