EFFECT OF ABIOTIC STRESS ON SYNTHESIS OF SECONDARY PLANT PRODUCTS: A CRITICAL REVIEW

Article Id: ARCC901 | Page : 172 - 182
Citation :- EFFECT OF ABIOTIC STRESS ON SYNTHESIS OF SECONDARY PLANT PRODUCTS: A CRITICAL REVIEW.Agricultural Reviews.2011.(32):172 - 182
Mohd Mazid*, Taqi Ahmed Khan, Firoz Mohammad mazidmohd699@gmail.com
Address : Advanced Plant Physiology Division, Department of Botany, Faculty of Life Sciences, AMU, Aligarh - 202 002, India

Abstract

Drought and salinity are serious threats to agriculture and natural physico-biochemical status of plants metabolism. Generally, plants show an ability to adopt their metabolism to changes in environment. They synthesize an array of secondary products with economic value in normal environment but, however, several stress factors can results in increased their production. As a fact that under stress conditions, a strong oversupply of reduction equivalents (NADPH+H+) is produced. An analysis suggests that amount of secondary plant products is higher in plants, severely affected from abiotic stress than plants grown under optimal conditions. In order to reduce damage by ROS, NADPH+H+ is re-oxidized by photorespiration and violaxanthine cycle. Yet, the higher concentration of reduction equivalents proceeds to growth of reduced secondary metabolites. In this review, we targeted special emphasis on quality and quantity aspects of improvement by enhancing the average level of plant metabolites possess economic value, by deliberately applying stresses.

Keywords

Drought stress Mehler reaction NADPH+H+ Quality improvement Salt stress Secondary plant product.

References

  1. Ali, R. M., Abbas, H. M. (2003). Plant Soil Environ, 49(4): 158-162.
  2. Amudha, J. and Balasubramani, G. (2011). Biotechnol Molecular Bio Rev, 6(2): 31-58.
  3. Asada, K. (2006). Plant Physiol, 141: 391–396.
  4. Benkeblia, N. and Selselet-Attou, C. G. (1999). Acta Agricultarae Scandinavica, 49: 98-102.
  5. Brachet, J. and Cosson, L. (1986). J. Exp Bot, 37: 650-656.
  6. Chang, P. T. And Randle, W. M. (2005). J. Plant Nut, 28: 1755-1766.
  7. Chaves, M. M., et al., (2002). Ann Bot., 89: 907–916.
  8. Chen, H. X., et al., (2004). Photosynthetica, 42(1): 117-122.
  9. Cisneros-Zevallos, L. (2003). J. Food Sci., 68: 1560-1565.
  10. Curtis, W. R., et al., (1995). Enzyme and Microbial Technol, 17: 554–557.
  11. Davies, W. and Zhang, J. J. (1991). Annual Rev Plant Phy and Plant Molecular Bio, 42: 55–76.
  12. De Abreu, I. N. And Mazzafera, P. (2005). Plant Physiol Biochem, 43: 241-248.
  13. Delitala, l-F., et al., (1986). Fitoterapia, 57(6): 401-408.
  14. Dixon, R. and Paiva, N. (1995). Plant Cell, 7: 1085-1097.
  15. Faltin, Z., et al., (2010). Plant and Cell Physiol, 51(7): 1151-62.
  16. Franks, P. J., et al., (1997). Plant and Cell Environ, 20: 142–145.
  17. Gao, M., et al., (2001). Plant Sci, 160: 837-845.
  18. Gapinska, M. M. and Sklodowska, G. B. (2008). Acta Physiologiae Plantarum, 30: 11-18.
  19. Harborne, J. B. and Williams, C. A. (2000). Phytochemistry, 55: 481-504.
  20. Hasegawa, P. M., et al., (2000). Annual Rev Plant Physiol, 51: 463–499.
  21. Herppich, W. B. and Peckmann, K. (1997).J. Plant Physiol, 150: 467–474.
  22. Hertog, M. G. L., et al., (1993). Nutrition and Cancer, 20: 21-29.
  23. Hideg, E., et al., (1995). Photosynthesis Res, 46: 399-407.
  24. Hong, Z., et al., (2000). Plant Phy., 122: 1129–1136.
  25. Hsieh, T. H., et al., (2002). Plant Physiology, 129: 1086–1094.
  26. Hsu, S. Y. and Kao, C. H. (2003). Biologia Plantarum, 46: 617-619.
  27. Islam, M. R., et al., (2011). J. Sci. Food Agric., 91(5): 813-819.
  28. Jaglo, K. R., et al., (2001). Plant Physiol, 127: 910–917.
  29. Jakob, B. and Heber, U. (1996). Plant and Cell Physiology, 37(5): 629-635.
  30. Jia, W., et al., (2002). J. Exp. Bot, 53: 2201–2206.
  31. Joye, L. B. and David, J. G. (1991). Biotechnol Bioengineering, 37: 859–868.
  32. Kang, J. Y., et al., (2002). Plant Cell, 14: 343–357.
  33. Kennedy, B. F. and De Filippis, L. F. (1999). Journal of Plant Physiology, 155(6): 746-754.
  34. Kim, S. A., et al., (2001). Plant and Cell Physiology, 42: 72-84.
  35. Kreps, J. A., et al., (2002). Plant Physiology, 130: 2129–2141.
  36. Krishnamurthy, R. and Bhagwat, K. A. (1989). Plant Physiology, 91: 500-504.
  37. Kubota, N., et al., (1988). Okayama Daigaku Nogakubu Gakujutsu, 171: 17-21.
  38. Lawlor, D. W. (2002). Annals of Horticulture, 89: 871–885.
  39. Mano, J. (2002). Early events in environmental stresses in plants. Induction mechanisms of oxidative stress, In: Inze, D., Van Montagu, M., (Eds.), Oxidative stress in plants, Taylor and Francis, London, pp. 217–246.
  40. Marrs, K. A. (1996). Annual Review of Plant Physiology and Plant Molecular Biology, 47: 127-158.
  41. Mittler, R. (2002). Trends in Plant Science, 7: 405-410.
  42. Mohamed, A. A. And Aly, A. A. (2008). American- Eurasian Journal of Science Research, 3(2): 139-146.
  43. Moller, I. M. And Sweetlove, L. J. (2010). Trends in Plant Science, 15(7): 370-374.
  44. Morgan, J. M. (1984). Annual Review of Plant Physiology, 35: 299-319.
  45. Mundy, J., et al., (1990). Proceeding of the National Academy of Sciences USA, 87: 406–410.
  46. Muthukumarasamy, M. (2000). Biologia Plantarum, 43: 317-320.
  47. Nakao, M., et al., (1999). Plant and Cell Reproduction, 18: 759–763.
  48. Nascimento, N. C. and Fett-Neto, (2010). Methods in Molecular Biology, 643: 1-13.
  49. Navari-Izzo, F., et al., (1990). Plant Physiology and Biochemistry, 28: 531-537.
  50. Noguees, S., et al., (1998). Plant Physiology, 117: 173-181.
  51. Orozco-Cardenas, M., et al., (2001). Plant Cell, 13: 179–191.
  52. Pommerrenig, B., et al., (2007). Plant Physiology, 144: 1029-1038.
  53. Ren, J., et al., (2007). Forest Ecology and Management, 239: 112-119.
  54. Riechmann, J. L., et al., (2000). Science, 290: 2105–2110.
  55. Ruan, C-J. and Teixeira da Silva, J. A. (2011). Critical Reviews in Biotechnology, 31(2): 153-169.
  56. Ruciniska-Sobkowiak, R. (2010). Postepy Biochemii, 56(2): 191-200.
  57. Selmar, D. and Mohammed, A. A. (2007). www.yearofscience.org/uploads/documents/2007-dt-et-03.pdf.
  58. Shalata, A., et al., (2001). Physiologia Plantarum, 112(4): 487-494.
  59. Sharma, I., et al., (2010). Indian Journal of Biochemistry and Biophysics, 47(3): 172-177.
  60. Siddiqui, M. H., et al., (2009b). Plant Stress, 3: 55-63.
  61. Singh, K., et al., (2009). Functional and Integrative Genomics, 9(1): 125-34.
  62. Stab, M. R. and Ebel, J. (1987). Archieves of Biochemistry and Biophysics, 257: 416–423.
  63. Tarczynski, M. C., et al., (1993). Science, 259: 508–510.
  64. Van Breusegem, F., et al., (2001). Plant Science, 161: 405-414.
  65. Wang, Q., et al., (2011). Advanced Materials Research, 183-185.
  66. Wang, T., et al., (2007). Biologia Plantarum, 51: 181-184.
  67. Wang, X-F., et al., (2011). Shengwu Jishu Tongxun, 22(1): 108-112.
  68. Weisman, D., et al., (2010). BMC Plant Biology, 7: 59-63.
  69. Wyn-Jones, R. G. and Gorhan, J. (1983). Osmoregulation, In: Lange, H., et al., (Eds.), Physiological Plant Ecology. III. Responses to chemical and Biological Envirnment. (Encylopedia of Plant Physiology, New Series, Vol 12C) Springer-Verlag, berlin- Heidelberg-New York, pp. 35.
  70. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). Plant cell, 6: 251-264.
  71. Yan, Y., et al., (2011). Plant Journal, 65(5): 820-828.
  72. Zhang, X., et al., (2011). Plant Molecular Biology, 75 (4-5): 365-378.
  73. Zhu, J. K. (2002). Annual Reviews of Plant Physiology, 53: 247-273.

Global Footprints