Article Id: ARCC591 | Page : 283-292
Citation :- IMPACT OF CLIMATE CHANGE ON SOIL BIODIVERSITY - A REVIEW.Agricultural Reviews.2012.(33):283-292
Asit Mandal* and Neenu S.
Address : Indian Institute of Soil Science, Nabi Bagh, Berasia Road , Bhopal-462 038, India


Global climate change can have significant impacts on all the soil biodiversity and related services. These impacts can be directly or indirectly linked to the alteration of the climatic parameters (e.g. temperature, humidity). Soil biodiversity is more extensive than any other environment on the globe when all living forms are considered. The soil biota contains representations of all groups of microorganism like fungi, bacteria, algae and viruses, as well as the microfauna such as protozoa and nematodes. Today, disturbance regimes are changing drastically under the combined effects of climate change, biological invasions and direct human modifications of the environment. However, it remains very difficult to assess and predict how soil communities will respond to these disturbances. Environmental variability is an integral part of the dynamics of ecosystems, and some disturbances are unavoidable. Climate change may intensify these seasonal disturbances, stretching the limits more towards those of extreme events.


Climate change Soil biodiversity Soil ecology Green house gas.


  1. Bardgett, R. and Leemans, D. (1996). Soil microbial activity on exposed mountain ridges in Snowdonia (Eryri), North Wales. Soil Biol. Biochem., 28: 1533-1536.
  2. Bardgett, R. D., Frankland, J. C. and Whittaker, J.B. (1993). The effects of agricultural management on the soil biota of some upland grasslands. Agri Ecosys Env., 45: 25-45.
  3. Bardgett, R. D., Leemans, D. K., Cook, R. and Hobbs, P. J. (1997). Seasonality of soil biota of grazed and ungrazed hill grasslands. Soil Biol. Biochem., 29:1285–1294.
  4. Berntson, G. M. and Bazzaz, F. A. (1997). Nitrogen cycling in microcosms of yellow birch exposed to elevated CO2: Simultaneous positive and negative below-ground feedbacks. Glob. Change Biol., 3: 247-258.
  5. Blankinship, J. C., Niklaus, P. A. and Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia., 165: 553–565.
  6. Bolton, P. J. and Phillipson, J. (1976). Burrowing, Feeding, Egestion and Energy Budgets of Allolobophora-Rosea (Savigny) (Lumbricidae). Oecologia., 23: 225-245.
  7. Booth, L.H., Heppelthwaite, V. and McGlinchy, A. (2000). The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers., 5: 46-55.
  8. Briones, M.J.I., Ineson, P. and Sleep, D. (1999) Use of 813C to determine food selection in collembolan species. Soil Biol Biochem., 31:937–940.
  9. Carpenter, D., Hodson, M.E., Eggleton, P. and Kirk, C. (2007). Earthworm induced mineral weathering: Preliminary results. ISEE8: International Symposium on Earthworm Ecology, 8:341, Krakov, Poland.
  10. Cassagne, N., Gers, C. and Gauquelin, T. (2003). Relationships between Collembola, soil chemistry and humus types in forest stands (France). Biol. Fert. Soils., 37: 355-361.
  11. Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J. and Schadt, C.W. (2010). Soil microbial community response to multiple experimental climate change drivers. Appl. Environ. Microbial., 76:999-1007.
  12. Chen, B., Snider, R.J. and Snider, R.M. (1996) Food consumption by collembola from northern Michigan deciduous forest. Pedobiologia., 40:149–161.
  13. Choi, W. I. and Ryoo, M. I. (2003). A matrix model for predicting seasonal fluctuations in field populations of Paronychiurus kimi (Collembola : Onychiruidae). Ecol. Model., 162: 259-265.
  14. Choudhuri, D. K. (1963). Temperature and its effect on the three species of the genus Onychiurus Collembola. Proc. Zool. Soc., 16: 97–117.
  15. Chown, S. and Nicolson, S. (2004). Insect physiological ecology. New York, Oxford University Press.
  16. Christiansen, K. (1964). Bionomics of collembola. Annu. Rev. Entomol., 9: 147-178.
  17. Daniel, O. (1991). Leaf-litter consumption and assimilation by juveniles of Lumbricus-terrestris L. (Oligochaeta, Lumbricidae) under Different Environmental-Conditions. Biol. Fertil. Soils., 12: 202-208.
  18. De Santo, A.V., Berg, B., Rutigliano, F.A., Alfani. A. and Fioretto, A. (1993). Factors regulating early-stage decomposition of needle litters in five different coniferous forests. Soil Biol. Biochem., 25:1423–1433.
  19. Diekkruger, B. and Roske, H. (1995). Modeling the population-dynamics of Isotoma-notabilis (collembola) on sites of different agricultural usage. Pedobiologia., 39: 58-73.
  20. Dijkstra, F. A. and Cheng, W.X. (2007). Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol. Biochem., 39: 2264-2274.
  21. Dollery, R., Hodkinson, I.D. and Jonsdottir, I.S. (2006) Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography., 29: 111–119.
  22. Emmerling, C., Schloter, M., Hartmann, A. and Kandeler, E. (2002). Functional diversity of soil organisms - a review of recent research activities in Germany. Plant Nutr. Soil Sci., 165: 408-420.
  23. Freckman, D. W. (1988). Bacterivorous nematodes and organic-matter decomposition. Agri. Ecosyst. Environ.,
  24. 24: 195-217.
  25. Griffiths, B.S., Ritz, K. and Wheatley, R.E. (1994). Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil use Manage., 10: 20-24.
  26. Haimi, J., Laamanen, J., Penttinen, R., Räty, M. and Koponen, S. (2005). Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Appl. Soil Ecol.. 30: 104–112. 
  27. Harris, R. F. (1980). Effect of water potential on microbial growth and activity. Water potential relations in soil microbiology Special publication no 9. Soil Society of America, Madison, Wisconsin: 23-95.
  28. Harte, J., Rawa, A., Price, V. (1996). Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem., 28: 313–322.
  29. Hoffland, E., Kuyper, T.W., Wallander, H., Plassard, C., Gorbushina, A. A., Haselwandter, K., Holmstrom, S., Landeweert, R., Lundstrom, U.S., Rosling, A., Sen, R., Smits, M.M., van Hees, P.A.W. and van Breemen, N. (2004). The role of fungi in weathering. Front. Ecol. Environ., 2: 258–264.
  30. Holmstrup, M. (2001). Sensitivity of life history parameters in the earthworm Aporrectodea caliginosa to small changes in soil water potential. Soil Biol. Biochem., 33:1217-1223.
  31. Hooper, D.U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J. and Wardle, D.A. (2005). Effect of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr., 75:3–35.
  32. Hopkin, S.P. (1997) Biology of the Springtails (Insecta, Collembola). Oxford: Oxford University Press. 326p.
  33. Hoschitz, M. and Kaufmann, R. (2004). Soil nematode communities of Alpine summits-site differentiation and microclimatic influences. Pedobiologi., 48: 313-320.
  34. Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., Rose, S. L., Reid, C. P. P., and Morley, C. R. (1987). The detrital food web in a shortgrass prairie. Biol. Fertil. Soils., 3: 57-68.
  35. Huntingford, C., Cox, P. M. and Lenton, T.M. (2000). Contrasting responses of a simple terrestrial ecosystem model to global change. Ecol. Model., 134: 41-58.
  36. Ingham, E.R., Trofymow, J.A., Ames, R.N., Hunt, H.W., Morley, C.R., Moore, J.C., Coleman, D.C. (1986). Trophic interactions and nitrogen cycling in a semi-arid grassland soil. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol., 23:597–614.
  37. Jucevica, E. and Melecis, V. (2006). Global warming affect collembola community: A long-term study. Pedobiologi.,
  38. 50: 177–184.
  39. Lovell, R. D., Jarvis, S. C. and Bardgett, R. D. (1995). Soil microbial biomass and activity in long-term grassland - effects of management changes. Soil Biol. Biochem., 27: 969-975.
  40. Maeder, P. A., Fliessbach, A, Dubois, D., Gunst, L., Fried, P. and Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science., 296: 1694.
  41. McSorley, R. (2003). Adaptations of nematodes to environmental extremes. Florida Entomologist., 86: 138-142.
  42. Papatheodorou , E.M., Argyropoulou, M.D. and Stamou, G.P. (2004).The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Appl. Soil Ecol., 25: 37-49.
  43. Pfiffner, L. and Mader, P. (1997). Effects of biodynamic, organic and conventional production systems on earthworm populations. Biol. Agric. Hortic., 15: 3-10.
  44. Prado, A. and Airoldi, C. (1999). The influence of moisture on microbial activity of soils. Thermochimica Acta.,
  45. 332: 71-74.
  46. Roy, S. and Roy, M.M. (2006). Spatial distribution and seasonal abundance of soil mites and collembola in grassland and Leucaena plantation in a semi-arid region. Tropical Ecol., 47: 57-62.
  47. Ruess, L., Michelsen, A., Schmidt, I. K. and Jonasson, S. (1999). Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant Soil., 212: 63-73.
  48. Schadt, C.W., Martin, A.P., Lipson, D.A. and Schmidt, S.K. (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science., 301: 1359-1361.
  49. Scheu, S. (1987). Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol. Fert. Soils.,
  50. 5: 230-234.
  51. Schils, R., Kuikman, P. Liski, J., Oijen, M. van., Smith, P., Webb, J., Alm, J., Somogyi, Z., Akker, J. van den, Billett, M., Emmett, B., Evans, C., Lindner, M., Palosuo, T., Bellamy, P., Alm, J., Jandl, R., Hiederer, R. (2008). Review of existing information on the inter relations between soil and climate change (CLIMSOIL).http.//
  52. Siegrist, S., Schaub, D., Pfiffner, L. and Mader, P. (1998). Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agri. Ecosyst. Env., 69: 253-264.
  53. Siepel, H. (1996). Biodiversity of soil microarthropods: The filtering of species. Biodivers. Conserv., 5: 251-260.
  54. Strong, D.T., De Wever, H., Merckx, R. and Recous, S. (2004). Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil Sci., 55: 739-750.
  55. Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in terrestrial ecosystems–studies Ecology, Vol 5. Blackwell Scientific, Oxford, UK.
  56. US EPA Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010. emissions/usinventoryreport.
  57. Vannier, G. (1994). The thermo biological limits of some freezing intolerant insects –The super cooling and thermo stupor points. Acta Oecologica., 15: 31-42.
  58. Wall, D. H. and Virginia, R. A. (1999). Controls on soil biodiversity: insights from extreme environments. Appl. Soil Ecol., 13: 137-150.
  59. Wallwork J.A. (1970). Ecology of soil animals. McGraw Hill, London. 283 p.
  60. Wasilewska, L. (1994). The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia., 38: 1-11.
  61. Xu, G.L., Schleppi, P., Li, M.H. and Fu, S.L. (2009). Negative responses of collembola in a forest soil (Alptal) under increased atmospheric N deposition. Environ. Pollut., 157: 2030–2036.
  62. Zak, D. R., Pregitzer, K.S., Curtis, P.S. and Holmes, W.E. (2000). Atmospheric CO2 and the composition and function of soil microbial communities. Ecol. Appl., 10: 47-59.

Global Footprints