Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 33 issue 3 (september 2012) : 181 - 191

PHYSIOLOGY, METABOLISM AND NUTRITIONAL REQUIREMENTS IN EARLY LACTATION TO AUGMENT MILK PRODUCTION IN CATTLE – A REVIEW

Z.A. Pampori*, M. Raies Haq, Ajaz. A. Ganie, A. K. Singh
1Dairy Cattle Physiology Division, National Dairy Research Institute, Karnal- 132 001, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Pampori* Z.A., Haq Raies M., Ganie A. Ajaz., Singh K. A. (2024). PHYSIOLOGY, METABOLISM AND NUTRITIONAL REQUIREMENTS IN EARLY LACTATION TO AUGMENT MILK PRODUCTION IN CATTLE – A REVIEW. Agricultural Reviews. 33(3): 181 - 191. doi: .
Profitable dairy farming relies mainly on optimum milk production and a calf a year. Early lactation period  may be called profit period as dairy farmer gets more profit through milk during this period. Lactation is a physiological state associated with dramatic metabolic adaptations and changes in energy balance. During early lactation (first 10 days in milk) the connection between nutrient supply and milk production appears uncoupled as milk yield is increasing at a steep slope while calculated energy balance is simultaneously decreasing towards its nadir. The major criterion for improvement in production is to optimize the efficiency of utilization of the available fodder resource, which can be achieved by adopting basic concepts; like  making the digestive system of the cow efficient, balancing nutrients, achieving high levels of dry matter intake throughout the transition period  through excellent feeding management  and using supplements of protein, starch and lipids to provide nutrients for milk production above those obtained when the efficiency of utilization of the basal feed has been optimized.
  1. Accorsi, P.A., Govoni, N., Gaiani, R., Pezzi, C.,Seren, E. and Tamanini, C. (2005). Leptin, GH, PRL, Insulin and metabolic parameters throughout the dry period and lactation in dairy cows. Reprod. Domes. Anim. 40: 217-223.
  2. Aceves, C., Ruiz-J, A., Romero, C. and Valceroe-R, C. (1985). Homeorhesis during early lactation. Euthyroid sick-like syndrome in lactating cows. Acta Endocrinol. 110 : 505–509.
  3. Baldwin, B.R., Forsberg, N.E. and Hu, C.Y. (1985). Potential for altering energy partition inthe lactating cow. J. Dairy Sci. 68: 3394-3402.
  4. Bauman, D.E. and Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A Review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63: 1514-1529.
  5. Bauman, D.E. and Vernon, R.G. (1993). Effects of exogenous bovine somatotropin on lactation. Annual Rev. Nutr.
  6. 13: 437–461.
  7. Bauman, D.E., Corl, B.A., Baumgard, L.H. and Griinari, J.M. (2001). Conjugated linoleic acid (CLA) and the dairy cow. In: Recent Advances in Animal Nutrition, P.C. Garnsworthy and J. Wiseman (edn). Nottingham University Press, Nottingham, UK. pp 221-250.
  8. Bell, A.W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73: 2804-2819.
  9. Bennink, M. R., Mellenberger, R. W., Frobish, R. A. and Bauman, D. E. (1972). Glucose oxidation and entry rate as affected by the initiation of lactation. J. Dairy Sci. 55: 712.
  10. Bernal-Santos, G., Perfield, J.W., Overton, T.R. and Bauman, D.E. (2001). Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. J. Dairy Sci. 84(Suppl. 1): 82.
  11. Botts, R. L., Hemken, R. W. and Bull, L. S. (1979). Protein reserves in the lactating cow. J. Dairy Sci. 62: 433.
  12. Brown, R. E. (1969). The conversion of nutrients into milk. Conference for feed manufacturers in the University of Nottingham third nutrition. H. Swan and D. Lewis, ed. J & A Churchill Ltd., London, England.pp- 23.
  13. Brumby, P.E., Storry, J.E., Bines, J.A. and Fulford, R.J. (1978). Utilisation of energy for maintenance and production in dairy cows given protected tallow during early lactation. J. Agric. Sci., Camb. 91: 151.
  14. Chaiyabutr, N., Thammacharoen, S., Komolvanich, S. and Chanpongsang, S. (2007). Effects of long-term exogenous bovine somatotropin on water metabolism and milk yield in crossbred Holstein cattle. J. Agric Sci. 145: 173–184.
  15. Chilliard, Y. (1987). Variations quantitatives et métabolisme des lipides dans les tissus adipeux et de foie au cours du cycle gestation-lactation. 2 – Chez la brebis et la vache (Body composition and lipid metabolism in adipose tissues and liver during pregnancy and lactation. 2 – In the ewe and the cow). Reprod. Nutr. Develop. 27: 327–398.
  16. Christensen, J. O., Grummer, R. R., Rasmussen, F. E. and Bertics, S. J. (1997). Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J. Dairy Sci. 80: 563-568.
  17. Cowie, A. T., and S. J. Folley. (1961). The mammary gland and lactation. Sex and internal secretions, 3rd ed. Vol. I. W.C. Young, ed. The Williams & Wilkins Co., Baltimore, MD. pp 590–642.
  18. Currie, M.J., Bassett, N. S., Breier, B.H., Klempt, M., Min, S.H., Mackenzie, D. D.,
  19. McCutcheon, S.N. and Gluckman, P.D. (2000). Mammary Gland. Biol. Neoplasia. 5: 43-51.
  20. Drackley, J. K. (1998). Transitional period nutrition management explored. Feed stuffs. 70 : 12-16.
  21. Dubey, D. K. (2010). Partitioning of nutrients during lactation in dairy animals. http://www.thecattlesite.com/articles/ 2276/partitioning-of-nutrients-during-lactation-in-dairy-animals.
  22. Elliot,B. (2010). Transition Cow Research – What Makes Sense Today? High Plains Dairy Conference. Amarillo, Texas.pp-75-98.
  23. Emery, R. S., Liesman, J. S. and Herdt, T. H. (1992). Metabolism of long-chain fatty acids by ruminant liver. J. Nutr. 122: 832-837.
  24. FAO STAT (2009): FAO Statistical Databases (FAOSTAT), Food and Agriculture Organization of the United Nations (FAO), http://faostat.fao.org.
  25. Ferguson, J. D. (2001). Nutrition and reproduction in dairy herds. In Proc. 2001 Intermountain Nutr. Conf., Salt Lake City, UT. Utah State Univ., Logan. pp. 65-82.
  26. Feuermann ,Y., Mabjeesh, S.J. & Shamay, A. (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941–2946.
  27. Flint, D. J., Tonner, E., Knight, C. H., Whitelaw, C. B. A., Webster, J., Barber, M. and Allan, G. (2001). Control of mammary involution by insulin-like growth factor binding proteins: Role of prolactin. Livestock Prod. Sci.
  28. 70: 115–120.
  29. Forsyth, I.A. (1983). The endocrinology of lactation. In Biochemistry of lactation, (Mepham, T.B., Ed.) Elsevier Science Publishers. pp 309–349.
  30. Gallardo, M.R., A.R. Castillo, F. Bargo, A.A. Abdala, M.G. Maciel, H. Perez-Monti, H.C. Castro and M.E. Castelli. (2005). Monensin for lactating dairy cows grazing mixed-alfalfa pasture and supplemented with partial mixed ration. J. Dairy Sci. 88: 644-652.
  31. Garthwaite, C., Schwab, G. and Sloan, B.K. (1998). Amino acid nutrition of the early lactation cow. Proc. 60th Cornell Nutr. Conf. Feed Manuf., Cornell University, Ithaca, NY.
  32. Giesy, J.G., Sanchez, W.K., McGuire, M.A., Higgins, J.J., Griffel, L.A. and Guy, M.A. (1997). Quantifying the relationship of dietary cation-anion difference to blood calcium in cows during hypocalcemia. J. Dairy Sci. 80 (Suppl. 1):142.
  33. Grummer, R.R. (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73: 2820-2833.
  34. Hale, S. A., Capuco, A. V. and Erdman, R. A. (2003). Milk yield and mammary growth effects due to increased milking frequency during early lactation. J. Dairy Sci. 86: 2061-2071.
  35. Hayirli, A., Bertics, S. J. and Grummer, R. R. (2002). Effects of slow-release insulin on production, livertriglyceride, and metabolic profiles of Holsteins in early lactation. J. Dairy Sci. 85: 2180-2191.
  36. Hayirli, A., Grummer, R.R., Nordheim, E., Crump, P., Beede, D.K., VandeHaar , M. J. and Kilmer, L.H. (1998). A mathematical model for describing DMI of transition dairy cows. J. Dairy Sci. 81 (Suppl. 1): 296.
  37. Hoffman, P. C. and Bauman, L. M. (2003). Strategies to improve milk yield of lactating dairy cows fed red clover silage. The Professional Animal Scientist. 19 : 178-187
  38. Ipharraguerre, I. and Clark, J.H. (2003). Usefulness of ionophores for lactating dairy cows: a review. Anim. Feed Sci. Tech. 106: 39-57.
  39. Jenkins, T.C. and Palmquist, D.L. (1984). Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci. 67: 978.
  40. Knight, C.H., Wilde, C.J. and Peaker, M. (1988). Manipulation of milk secretion. In Nutrition and lactation in the dairy cow” (edited by P.C. Garnsworthy). Proceedings of the 46th University of Nottingham Easter School in Agricultural Science. pp. 3–14.
  41. Knopp, R. H., Saudek, C. D., Arky, R. A. and O’Sullivan, J. B. (1973). Two phases of adipose tissue metabolism in pregnancy: Maternal adaptations for fetal growth. Endocrinology. 92: 984.
  42. Kronfeld, D.S. (1982). Major metabolic determinants of milk volume, mammary efficiency and sponteneous ketosis in dairy cows. J. Dairy Sci. 65: 2204.
  43. Kung, L.M. Jr. (1999). Direct-fed microbials and enzymes for ruminants. J. Dairy Sci. 82 (Suppl. 1): 68.
  44. Lance, H. B., Laura, J. O., Jane, K. K., Robert, P. R., Matthew, J. V. and Robert, J. C. (2006). Does Negative Energy Balance (NEBAL) Limit Milk Synthesis in Early Lactation. In Proceedings of 21st Annual Southwest Nutrition & Management Conference, Tempe, Arizona. pp 181-187.
  45. Lee, C.F., Chen, C.P. and Shiao, T.F. (1999). Effect of beet pulp feeding for lactating dairy cows in summer. J. Chinese Soc. Anim. Sci. 28 (Suppl.): 82.
  46. McGuire, M. A, Bauman, D. E., Dwyer, D. A., Cohick, W. S. (1995). Nutritional Modulation of the Somatotropin/ Insulin like growth factor system: response to feed deprivation in lactating cows. J. Nutr. 125: 493-502.
  47. Mepham, T.B. (1983). Physiological aspects of lactation. In “Biochemistry of Lactation” (edited by Mepham T.B.). Elsevier Science Publishers.pp. 3–28.
  48. Moorby, J.M., Dewhurst, R.J., and Marsden, S. (1996). Effect of increasing digestible undegradable protein supply to dairy cows in late gestation on the yield and composition during the subsequent lactation. Anim. Sci. 63: 201-213.
  49. Overton, T R. (2003). Proceedings of the 6th Western Dairy Management Conference – March 12-14, 2003. Reno, NV—7.
  50. Overton, T. R., Piepenbrink, M. S. and Waldron, M. R. (2000). Interactions of liver metabolism andhealth in transition dairy cows. Proc. Cornell Nutr. Conf. Rochester, NY. pp. 251-261.
  51. Pickett, M. M., Piepenbrink, M. S. and Overton, T. R.(2002). Effects of propylene glycol or fat drench on plasma metabolites, liver composition, and production of dairy cows during the periparturient period. J. Dairy Sci. 86:
  52. Piepenbrink, M. S. and Overton, T. R. (2002). Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. J. Dairy Sci. 85: 3430 - 3443.
  53. Rivera, E. M. (1964). Maintenance and development of whole mammary glands of mice in organ culture. J. Endocrinol. 30: 33–39.
  54. Robinson, P.H., and Garrett, J.E. (1999). Effect of yeast culture (Saccharomyces cerevisiae) on adaptation of cows to postpartum diets and on lactational performance. J. Anim. Sci. 77: 988-999.
  55. Robinson, P.H., Moorby, J. M., Arana, M., Hinders, R., Graham, T., Castelanelli, L. and Barney, N. (2001). Influence of close-up dry period protein supplementation on productive and reproductive performance of Holstein cows in their subsequent lactation. J. Dairy Sci. 84: 2273-2283.
  56. Schwab, C.G., Bozak, C.K., Whitehouse, N.L. and Mesbah, M.M.A. (1992). Amino acid limitation and flow to duodenum at four stages of lactation. 1. Sequence of lysine and methionine limitation. J. Dairy Sci. 75 : 3486-3502.
  57. Sejrsen, K., Purup, S., Vestergaard, M., Weber, M.S & Knight, C.H. (1999). Growth hormone and mammary development. Domes. Anim. Endocrinol. 17: 117–129.
  58. Shaver, R. (1993). TMR strategies for transition feeding of dairy cows. 54th Minnesota Nutr. Conf. & Natl. Renderers Tech. Symp. Bloomington, MN. pp. 163.
  59. Stokes, S. R. and Goff, J. P. (2001). Evaluation of calcium propionate and propylene glycol administered into the oesophagus at calving. The Professional Animal Scientist. 17:115-122.
  60. Vande Haar, M. J., Yousif, G., Sharma, B. K., Herdt, T. H., Emery, R.S., Allen, M. S. and Liesan, J. S. (1999). Effect of energy and protein density of prepartum diets on fat and protein metabolism of dairy cattle in the periparturient period. J. Dairy Sci. 82: 1282-1295.
  61. Van Saun, R.J., Idleman, S. C. and Sniffen, C. J. (1993). Effect of undegradable protein amount fed prepartum on postpartum production in first lactation Holstein cows. J. Dairy Sci. 76: 236-244.
  62. Wu, Z., Fisher, R.J., Polan, C.E., and Schwab, C.G. (1997). Lactational performance of cows fed low or high ruminally undegradable protein prepartum and supplemental lysine and methionine postpartum. J. Dairy Sci. 80: 722-729.
  63. Xiao, Q. X., Kevin, L. G., Bernadatte, E. G. and Smith, M. S. (2004). Inhibition of uncoupling protein expression during lactation: Role of Leptin Endocrinology. 145: 830–838.

Editorial Board

View all (0)