REPRODUCTIVE BIOTECHNOLOGY IN SMALL RUMINANTS - A review

Article Id: ARCC576 | Page : 159 - 164
Citation :- REPRODUCTIVE BIOTECHNOLOGY IN SMALL RUMINANTS - A review.Agricultural Reviews.2012.(33):159 - 164
Y.S. Jadoun*, Pragya Bhadauria, V.K. Gupta1 and S.S. Lathwal yogivet2248@gmail.com
Address : Division of Dairy Extension, National Dairy Research Institute, Karnal-132 001, India

Abstract

The present scenario of small ruminants assisted reproductive techniques (ARTs) show a great deal of promise. The last two decades have changed the management of goat breeding dramatically through improved nutrition and veterinary assistance. Despite this, the artificial insemination (AI) is the only ART applied in selection programs. Now, it is essential to improve the efficiency of other useful ART technologies. The ARTs, for example cloning or  transgenesis, which are expensive and technically complex, are already being adopted by a number of biotechnological companies and the production of biomedical proteins (rc-proteins) from transgenic goats is very close to reaching commercial applications. Nevertheless, the application of these ARTs in small ruminant’s production would depend on efficiency and acceptance by consumers.

Keywords

Assisted reproductive techniques Small ruminants.

References

  1. Abdullah, R.B., Shamsul. A., Malik A. and Wan Khadijah W.E.. (1995). Production of kids through embryo transfer in goats assisted by a laparoscope. Proceeding of the 7th Malaysia Society Animal Production Annual Conference, Penang, Malaysia, pp: 59-60.
  2. Abdullah, R.B., Putat I. and Wan Khadijah. W.E. (2002). Successful artificial insemination (AI) protocol in goats using frozen semen. Proceeding of the 24th Malaysia Society Animal Production Annual Conference, Penang, Malaysia, pp: 101-103.
  3. Abdullah, R.B., Kanwal K.D.S. and Wan Khadijah W.E., (2001). Advancement of animal reproductive biotechnology in South East Asia. Asian-Aust. J. Anim. Sci., 14: 61-71. 
  4. Agrawal, K.P., Sharma, T., Sexena, C., Sharma, N., (1995). Chronology of first meiotic events of caprine oocytes matured in vitro. Ind. J. Anim. Sci. 65: 285-288.
  5. Amoah, E.A. and Gelaye. S. (1997). Biotechnological advances in goat reproduction. J. Anim. Sci., 75: 578-585.
  6. Baguisi, A., Behboodi. E. , Mellican. D.T., Pollock. J.S. , Destrempes M.M. and Cammuso. C. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17: 456-461.
  7. Baldassarre, H. and Karatzas. C.N. (2004). Advanced assisted reproduction technologies (ART) in goats. Anim. Reprod. Sci., 82-83: 255-266.
  8. Baldassarre, H., Keefer. C. , Lazaris B. W. A. and Karatzas. C.N. (2003)a. Nuclear transfer in goats using in vitro matured oocytes recovered by laparoscopic ovum pick-up. Clon. Stem Cells, 5: 279-28.
  9. Basrur, P.K. and King. W.A. (2005). Genetics then and now: Breeding the best and biotechnology. Rev. Sci. Tech., 24: 31-49.
  10. Campbell, K.H.S. (1999). Nuclear transfer in farm animal species. Semin. Cell Dev. Biol., 10:245-252.
  11. Chemineau, P. and Cogni, Y. (1991). Training manual on artificial insemination in sheep and goats. FAO, Rome, Italy.
  12. Cognia, Y., Baril. G., Poulin N. and Mermillod P. (2003). Current status of embryo technologies in sheep and goat. Theriogenology. 59: 171-188.
  13. Cognia, Y., (1999). State of the art in sheep-goat embryo transfer. Theriogenology, 51: 105-116.
  14. Crozet, N., Ahmed-Ali M. and Dubos. M.P. (1995). Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. J. Reprod. Fertil., 103: 293-298.
  15. Evans, G. and Maxwell W.M.C., (1987). Salamon’s Artificial Insemination of Sheep and Goats. 1st Edn., Butterworths, Sydney, Australia, ISBN: 0409491772, pp: 107-141.
  16. Holtz, W. (2005). Recent developments in assisted reproduction in goats. Small Rum.Res., 60: 95-110.
  17. Ishwar A, Memon. M. (1996). Embryo transfer in sheep and goats: a review. Small Ruminant Res., 19: 35-43.
  18. Keskintepe, L., Darwish. G.M., Kenimer. A.T., Brackett. B.G. (1994). Term development of caprine embryos derived from immature oocytes in vitro. Theriogenology, 42: 527-535.
  19. Keskintepe, L.P., Morton. S.E., Smith. M.J., Tucker. A.A., Simplicio and Brackett. B.G. (1997). Caprine blastocyst formation following intracytoplasmic sperm injection and defined culture. Zygote, 5: 261-265.
  20. Nicholas, F. W. and Smith C. (1983). Increased rates of genetic change in dairy cattle by embryo transfer and splitting. Anim. Prod. 36:341.
  21. Niemann, H. and Kues. W.A. (2003). Application of transgenesis in live-stock for agriculture and biomedicine. Animal Reprod. Sci., 79: 291–317.
  22. Tibary, A., Anouassi A. and Sghiri. S. (2005). Factors affecting reproductive performance of camels at the herd and individual level. In: Desertification Combat and Food Safety, Faye, B. and P. Esemov (Eds.). Life and Behavioural Sciences, IOS Press, Amsterdam, pp: 97-114.
  23. Thibier, M. and Guérin. B (2000). Embryo transfer in small ruminants: the method of choice for health control in germ plasma exchanges. Livest. Prod. Sci. 62: 253-270.
  24. Wall, R.J., (1996). Transgenic livestock: Progress and prospects for the future. Theriogenology, 45: 57-68.
  25. Wani N.A., Wani.G.M., Khan M.Z. and Salahudin. S. (2000). Effect of oocyte harvesting techniques on in vitro maturation and in vitro fertilization in sheep. Small Ruminant Res. 36: 63-67.
  26. Wang, Z., Wilson. G.F., Griffith. L.C. (2002). Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila Egg potassium channel. J. Biol. Chem. 27: 24022—24029. (Export to RIS).
  27. Warwick, B.L., Berry R.O. and Horlacher. W.R. (1934). Results of mating rams to Angora female goats. Proc. Amer. Sci. Anim. Produc. p.225.
  28. Wilmut, I., Schnieke.A.E. , McWhir. J., Kind. A.J., Campbell K.H.. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 13 (386), 200.

Global Footprints