Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 33 issue 1 (march 2012) : 54 - 61

OXIDATIVE STRESS IN SPERM BIOLOGY- A REVIEW

Gulab Chandra*, A. Aggarwal, A. Singh, A.K. Singh, M. Kumar1, R. Kushwaha, Y. K. Singh2,
1Dairy Cattle Physiology Division, National Dairy Research Institute, Karnal - 132 001, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Chandra* Gulab, Aggarwal A., Singh A., Singh A.K., Kumar1 M., Kushwaha R., Singh2 K. Y. (2024). OXIDATIVE STRESS IN SPERM BIOLOGY- A REVIEW. Agricultural Reviews. 33(1): 54 - 61. doi: .
Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies own natural antioxidant defenses, resulting in cellular damage. ROS, defined as including oxygen ions, free radicals and peroxides, are generated by sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm DNA, resulting in the passage of defective paternal DNA on to the conceptus. Spermatozoa, like all cells living in aerobic conditions face the oxygen (O2) paradox: O2 is required to support life, but its metabolites such as ROS can modify sperm cell functions, endanger sperm cell survival. ROS in small amount is necessary to maintain normal spermatozoa function. It is not surprising that a battery of different antioxidants is available to protect spermatozoa against oxidants. Spermatozoa are particularly susceptible to oxidative stress induced damage because their plasma membranes contain large quantities of polyunsaturated fatty acids (PUFA) and their cytoplasm contains low concentrations of scavenging enzymes. In addition, the intracellular antioxidant enzymes cannot protect the plasma membrane that surrounds the acrosome and the tail, forcing spermatozoa to supplement their limited intrinsic antioxidant defenses by depending on the protection afforded by the seminal plasma. Oxidative stress attacks not only the fluidity of the sperm plasma membrane, but also the integrity of DNA in the sperm nucleus. High content of polyunsaturated fatty acids in the plasma membrane and a low level of antioxidant in the sperm cytoplasm make them susceptible to oxidative stress and peroxidative attack during preservation. Defective and dead spermatozoa, major source of ROS during cryopreservation Cryoprotective media with antioxidants to overcome cryodamage.
  1. Agarwal, A., Nallella, K.P., Allamaneni, S.S. and Said, T.M., (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod. Biomed. Online 8: 616-27.
  2. Agarwal, A., Prabhakaran, S.A. and Sikka, S.C., (2007). Clinical relevance of oxidative stress in patients with male factor infertility: evidence-based analysis. AUA Update 26: 1-12.
  3. Aitken, R.J. and Clarkson, J.S., (1987). Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 81: 459- 469.
  4. Aitken, R.J. and Krausz, C., (2001). Oxidative stress, DNA damage and the Y chromosome. Reprod. 122:497-506.
  5. Aitken, R.J., West, K., and Buckingham, D., (1994). Leukocytic inûltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J. Androl. 15: 343–352.
  6. Aitken, R.J., (1995). Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 7: 659-68.
  7. Aitken, R. J. and Baker, H.W., (1995). Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 10: 1736– 1739.
  8. Aitken, R.J., (1997). Molecular mechanisms regulating human sperm function. Mol. Hum. Reprod. 3: 169-73.
  9. Aitken, R.J., Fisher, H.M., Fulton, N., Gomez, E., Knox, W. and Lewis, B., (1997). Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol. Reprod. Dev. 47: 468-82.
  10. Alvarez, J.G. and Storey, B.T., (2005). Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 42: 334-346.
  11. Armstrong, J.S., Rajasekaran, M., Chamulitrat, W., Gatti, P., Hellstrom, W.J. and Sikka, S.C., (1999). Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic. Biol. Med. 26: 869-80.
  12. Breininger, E., Beorlegui, N. M., O’flaherty, C. M. and Beconi, M. T., (2005). Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology 63: 2126-2135.
  13. Cande, C., Cecconi, F., Dessen, P. and Kroemer, G., (2002). Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J. Cell Sci. 115: 4727-34.
  14. Chatterjee, S., De Lamirande, E. and Gagnon, C., (2001). Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol. Reprod. Dev. 60: 498-506.
  15. Cheeseman, K.H. and Slater, T.F. (1993). An introduction to free radical biochemistry. BrMed. Bull. 49: 481–493.
  16. Cocuzza, M., Suresh, C., Sikka, Kelly, S., Athayde and Agarwal, A., (2007). Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int. braz. J. urol. 33(5): 603-621.
  17. de Lamirande, E. and Gagnon, C., (1992). Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J. Androl. 13: 379-86.
  18. de Lamirande, E., Leclerc, P. and Gagnon, C., (1997). Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 3: 175-94.
  19. Drobnis, E.Z., Crowe, L.M., Berger, T., Anchordoguy, T.J., Overstreet, J.W. and Crowe, J.H., (1993). Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265: 432–437.
  20. El-Sisy, G. A., El-Nattate W. L. and El-Shashtawy, R.I., (2007). Buffalo semen quality, antioxidants and peroxidation during chilling and cryopreservation. Online J. Vet. Res. 11: 55-61.
  21. Fisher, H. and Aitken, R. (1997). Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J. Exp. Zool. 277: 390– 400.
  22. Gadea, J., Selles, E., Marco, M.A., Coy, P., Matas, C., Romar, R. and Ruiz, S., (2004). Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 62: 690-701.
  23. Gagnon, C., Iwasaki, A., De Lamirande, E. and Kovalski, N., (1991). Reactive oxygen species and human spermatozoa. Ann. N Y Acad. Sci. 637: 436-44.
  24. Griveau, J.F., Dumont, E., Renard, P., Callegari, J.P. and Le Lannou, D., (1995). Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J. Reprod. Fertil. 103: 17-26.
  25. Helbock, H.J., Beckman, K.B., Shigenaga, M.K., Walter, P.B., Woodall, A.A. and Yeo, H. C., (1998). DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. USA 95: 288-93.
  26. Jeulin, C., Soufir, J.C., Weber, P., Laval-Martin, D. and Calvayrac, R., (1989). Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 24: 185-196.
  27. Kemal, D. N., Morshedi, M. and Oehninger, S. (2000) Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril., 74: 1200-7.
  28. Kodama, H., Kuribayashi, Y. and Gagnon, C., (1996). Effect of sperm lipid peroxidation on fertilization. J.Androl.17:151-7.
  29. Krammer, P.H., Behrmann, I., Daniel, P., Dhein, J. and Debatin, K.M., (1994). Regulation of apoptosis in the immune system. Curr. Opin. Immunol. 6: 279-89.
  30. Lasso, J.L., Noiles, E.E., Alvarez, J.G. and Storey, B.T., (1994). Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J. Androl. 15: 255–265.
  31. Lee, E., Ahn, M.Y., Kim, H.J., Kim, I.Y., Han, S.Y., Kang, T.S., Hong, J.H., Park, K.L., Lee, B.M. and Kim, H.S., (2007). Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environ. Toxicol. 22: 245–255.
  32. Lenzi, A., Lombardo, F., Gandini, L., Alfano, P. and Dondero, F., (1993). Computer assisted sperm motility analysis at the moment of induced pregnancy during gonadotropin treatment for hypogonadotropic hypogonadism. J. Endocrinol. Invest. 16: 683-6.
  33. Martinez, P., Proverbio, F. and Camejo, M.I., (2007). Sperm lipid peroxidation and pro-inûammatory cytokines. Asian J. Androl. 9: 102–107.
  34. Nandipati, K.C., Pasqualotto, F.F., Thomas, A.J. and Jr, Agarwal, A., (2005). Relationship of interleukin-6 with semen characteristics and oxidative stress in vasectomy reversal patients. Andrologia, 37: 131–134
  35. Noiles, E.E., Bailey, J. and Storey, B.T., (1995). Temperature dependence of the water permeability, Lp, of murine sperm shows a discontinuity between 48 and 08C. Cryobiology.32: 220–238.
  36. Ochsendorf, F.R., (1999). Infections in the male genital tract and reactive oxygen species. Hum. Reprod. Update 5: 399–420.
  37. Paasch, U., Sharma, R.K., Gupta, A.K., Grunewald, S., Mascha, E.J. and Thomas Jr, A. J., (2004). Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol. Reprod. 71: 1828-37.
  38. Peris, I.S., Bilodeau, J.F., Dufour, M. and Bailey, J., (2007). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram semen. Mol. Reprod. Dev. 74: 878-892.
  39. Said, T.M., Agarwal, A., Sharma, R.K., Thomas, A.J. and Sikka, S.C., (2005). Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil. Steril. 83: 95 –103.
  40. Sakkas, D., Mariethoz, E., St John, J.C., (1999). Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp. Cell Res. 251: 350-5.
  41. Sakkas, D., Urner, F., Bizzaro, D., Manicardi, G., Bianchi, P.G. and Shoukir, Y., (1998). Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum. Reprod. 13 (Suppl 4): 11-9.
  42. Sanocka, D., Jedrzejczak, P., Szumala-Kaekol, A., Fraczek, M. and Kurpisz, M., (2003). Male genital tract inûammation: The role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J. Androl. 24: 448– 455.
  43. Sharma, R.K., Pasqualotto, A.E., Nelson, D.R., Thomas, A.J. and Agarwal, A., (2001). Relationship between seminal white blood cell counts and oxidativestress in men treated at an infertility clinic. J. Androl. 22: 575–83.
  44. Shannon, P. and Curson, B., (1972). Toxic effect and action of dead sperm on diluted bovine semen. J. Dairy Sci. 55: 614–620.
  45. Sikka, S.C., (2004). Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J. Androl. 25: 5-18.
  46. Singh, P., Chand, D. and Georgie, G.C., (1989). Effect of vitamin E on lipid peroxidation in buffalo Bubalus bubalis. Indian J. Experim. Bio. 27: 14-16.
  47. Sinha, H.A.P. and Swerdloff, R.S., (1999). Hormonal and genetic control of germ cell apoptosis in the testis. Rev. Reprod. 4: 38-47.
  48. Slaweta, R., Wasowicz, W. and Laskowska, T., (1988). Selenium content, glutathione peroxidase activity, and lipid peroxide level in fresh bull semen and its relationship to motility of spermatozoa after freezing-thawing. Zentralbl Veterinarmed A. 35: 455–460.
  49. Spiropoulos, J., Turnbull, D.M., Chinnery, P.F., (2002). Can mitochondrial DNA mutations cause sperm dysfunction? Mol. Hum. Reprod. 8 : 719-21.
  50. Trevisan, M., Browne, R., Ram, M., Muti, P., Freudenheim, J.A., Carosella, M. and Armstrong, D., (2001). Correlates of markers of oxidative status in the general population. Am. J. Epidemiol. 154: 348–356.
  51. Trinchero, G.D., Affranchino, M.A., Schang, L.M. and Beconi, M.T., (1990). Antioxidant effect of bovine spermatozoa on lipid peroxidation. Com. Biol. 8: 339-350
  52. Twigg, J., Irvine, D.S., Houston, P., Fulton, N., Michael, L. and Aitken, R.J., (1998). Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol. Hum. Reprod. 4: 439-45.
  53. Upreti, G.C., Jensen, K., Munday, R., Duganzich, D.M., Vishwanath, R. and Smith, J.F., (1998). Studies on aromatic amino acid oxidase activity in ram spermatozoa: role of pyruvate as an antioxidant. Anim. Reprod. Sci. 51: 275–287.
  54. Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., Connors, S.A. and Pan, D., (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121: 1139-50
  55. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J., (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem Cell Biol. 39: 44–84.

Editorial Board

View all (0)