ROLE OF BIOTECHNOLOGY IN HYBRID SEED PRODUCTION OF VEGETABLE CROPS - A REVIEW

Article Id: ARCC4363 | Page : 163- 182
Citation :- ROLE OF BIOTECHNOLOGY IN HYBRID SEED PRODUCTION OF VEGETABLE CROPS - A REVIEW.Agricultural Reviews.2001.(22):163- 182
Rajinder Kumar Dhall and D.S.Cheema
Address : Department of Vegetable Crops, Punjab Agricultural University, Ludhiana - 141 004, India

Abstract

The review emphasises the role of biotechnological tools like micropropagation, molecular markers, anther culture, cybridization, induced male sterility and transgenics in the production of specific parental lines or hybrids in vegetables. Micropropagation can be used for maintenance of male sterile lines either controlled by recessive genes (tomato, muskmelon, chilli) or dominant genes (cabbage); maintenance of self-incompatible lines in cole crops and maintenance of hybrids as such through tissue culture. Molecular markers can be used for assessment of genetic diversity, construction of linkage maps, varietal identificaton and marker assisted selection for traits of interest. Anther culture techniques can be utilized for development of self-incompatible lines in cole vegetables and also to develop inbred lines in cross-pollinated vegetables. Cybridization is used for single step transfer of cytoplasmic male sterility from potato to tomato by protoplast fusion and generation of noval cybrids in tomato. Induction of male sterility by the use of ‘Barnase-Barstar’ systerm of hybrids seed production, is universally applicable for economic hybrid seed production especially in those vegetable crops where male sterility is not available (e.g. okra). Genetic transformation techniques can be used for trait specific transgenic parental lines for hybrids.

Keywords

References

  1. Anderson, We. and Carstens, B. (1977). J. Am. Soc. Hort. Sci. 102: 69-73.
  2. Barsbay, T.L. et al. (1984). Pl. Cell Rep. 3: 165.
  3. Baudracco-Arnas, S. and Pitrat, M. (1996). Theor. Appl. Genet. Y3: 57-64.
  4. Berg, G.L. et aI, (1996). PI. System Evolut. 200 (3/4): 253-261.
  5. Binding, H. et al. (1982). Theor. Appl. Genet. 6:i: 273.
  6. Bird, C.R. et al. (1988). PI. Mol. BioI. 11: 651-662.
  7. Brigneti, G, et al (1997). Theor. Appl. Genet. 94: 19S-:W:3
  8. Buter:ko, R.G, and Kuchko, AA (1980). DokI. Ak4 !I.~uk S.S.S.R. ~,n: 491.
  9. Can:argo, LEA and Osborn, T.e. (1996). Theol: Appl. Genet. 92: 610-616.
  10. Chaque, V. et al. (1996). Theor. Appl. Genet. 92: 1045-1051.
  11. Cheng, J. (1998). In: Asean Workshop on Regulations lor Agrku!tural Products Derived from B;okchnology, held
  12. during 1-2 April 1998, Singapore.
  13. Cheung, WY. et al. (1997). Theor. Appl. Genet. 94: 569-582.
  14. Chungwongse, J. et :11. (1994). Theor. Appl, Genet. 89: 76-79.
  15. Constabel, F. et al. (1976). Z PfIanzenphysiol. 79: 1.
  16. De Block, M. etal. (1987). EMBOJ. 6: 2513-2518.
  17. Dickinson, M.J. etal. (1993). Mol. Pl.-Microbe. Inter. 6: 341-347.
  18. Dirlewanger, E.P. etal. (1994). Theor. Appl. Genet. 88: 17-27.
  19. Don Grierson (1991). Hort. Sci. 26 : 1025-28.
  20. Droge, W etal. (1992). Planta 189: 142-51.
  21. Dudits, D. et al. (1979). PI. Sci Lett. 15: 101.
  22. Evans, D.A. etal. (1984). Am. J. Bot. 71: 759-774.
  23. Fisk, H.J. and Dandekar A.M. (1993). Scientia Hort. 55: 5-36.
  24. Hamilton, AJ. et al. (1990). Nature 346: 280-287.
  25. Harrison, B.D. et al. (1987). Nature 328: 799-802.
  26. Heller, R. etal. (1996). Theor. Appl. Genet. 92: 991-997.
  27. Hoey, B.K. etal. (1996). Theor. Appl. Genet. 92: 92-1 GO.
  28. Inai, S. et al. (1993). Theor. Appl. Genet. 87: 416-423.
  29. James, M.B. and Michael, J.H. (1995). J. Am. Soc. Hort. S"ci. 1~O: 752.
  30. Jame$, N. etal. (1993). J. Am. Soc. Hort. Sci. 118:2<)8-303.
  31. Kao. KN. et al (1974). Planta·120:215.
  32. Karihaloo, J.L et al. (1995). Theor. Appl, Genet. 90: 767-770.
  33. Klein-lankhorst, R. etal. (1991). Theor. Appl. Gener. 81: 661-667.
  34. Kriete, G. etal. (1996). PlantJ. 9: 809-18.
  35. Lanoue, KZ. et al. (1996). Theor. Appl. Genet. 93: 722-732.
  36. Lee, S.J. etal. (1996). Theor. Appl. Genet. 92: 719-725.
  37. Lorenz, M. etal. (1997). Theor. Appl. Genet. 94: 273-278.
  38. Maestri, E. et al. (1991). Theor. Appl. Genet. 81: 613-618.
  39. Major, S. etal. (1998). In: Silver Jubilee National Symposium, Dectmber 12-14,1998, Varanasi, UP, India. Pp 60-75.
  40. Mariani, e. et al. (1990). Nature 347: 737-41.
  41. Mariani, e. etal. (1992). Nature 357: 384-87.
  42. Martin, G.B. et al. (1991). Proc. Nat. Acad. Sci. (USA) 88: 2336-2440.
  43. McCallum, J. et al. (1997). J. Am. Soc. Hort. Sci. 122: 218-225.
  44. Medley, T.L. (1998). In: Asean Workshop on Regulations for Agricultural Products derived fro:1l biote('hr.r:>.'ogy. held
  45. during 1-2 April 1998, at Singapore.
  46. Meglic, V. and Staub, J.E. (1996). Theor. Appl. Genet. 92: 865-872.
  47. 182 AGRICULTURAL REVIEWS
  48. Meksem, K eta/. (1995). Mo/. Gen. Genet. 249: 74-8l.
  49. Melchers, G. et a/. (1978). In: Production of Natural Compounds by Cell Culture Methods. (Affermann AW and
  50. Reinhard F, Eds.) GSF, Munchen, Germany 306.
  51. Melchers, G. (1982). In: 5th Int. Congr. PI. Tissue Cell Cult., Tokyo.
  52. Melchers, G. et a/. (1992). In: Proc. Nat/. Akad. Sterility by Fusion of Mitochondrial-Inactivated. USA 89: 6832-36.
  53. Melchers, G. et a/. (1978). Carlsberg Res. Commun. 43: 203.
  54. Michelmore, RW eta/. (1991). In: Proc. Nati. Acad. Sci., USA, 88: 9828-9832
  55. Millis, N.F. (1998). In: Asean Workshop on Regulations for Agricultural Products Derived from Biotechnology, held
  56. during 1-2 April 1998, Singapore.
  57. Morchen, M. et a/. (1996). Theor. App/. Genet. 92: 326-333.
  58. Mutschler, M.A. et a/. (1996). Theor. Appl. Genet. 92: 709-718
  59. Negi, p.s. and Joshi M.C. (1996). MadrasJ. Agric. Sci. 81: 649-50.
  60. Nelson, R.S. etal. (1988). Biotechnology 6: 403-409.
  61. Nienhuis, J. et a/. (1987). Crop Sci. 27: 797-803.
  62. Nodari, RO. etal. (1993). Theor. App/. Genet. 85: 513-520.
  63. O' Cannell, MA and Hanson M.R. (1985). Theor. Appl. Genet. 70: 1.
  64. Ohmori, T etal. (1996). Theor. App/. Genet 92: 151-156.
  65. Okeno, J.A. and Ayieicho, P.O. (1996). Discovery and Innovation 8(2): 151-158.
  66. Osborn, Te;. et a/. (1987). Theor. Appl. Genet. 85: 632-638.
  67. Paul, G.L. et al. (1997). J. Am. Soc. Hart. Sci. 122: 79-82.
  68. Paran, 1. and Michelmore. RW (1993). Theor. App/. Genet. 85: 985-993.
  69. Phippen. WB. et a! (1997). Theor. Appl. Genet. 94: 227-234.
  70. Pich, U. et al. (1996). PI. System Evolut. 202 (3/4): 255-264.
  71. Pineda, O. et al. (1993). Genome 36: 152-156.
  72. Plaisted, RL. et al. (1994). In: The Molecular and cellular Bio/ogy of the Potato. Ed Pp 1-20.
  73. Prience, J.P. eta/. (1993). Genome. 36: 404-417.
  74. Reinert, J. and Bajaj, Y.P.S (1977). Applied and Fundamental Aspects of Plant Cell Tissue and Organ Culture. Springer-Verlag, Berlin.
  75. Rick, C.M. alld Fobes, J.F. (1974). Rept. Tomato Genetics Cooperative 24:23
  76. Sarfatti, M. et al. (1991). Theor. Appl. Genet. 82: 22-26.
  77. Santos, J.B. etal. (1994). Theor. App/. Genet. 87: 909-915.
  78. Schenck. H.R. (lnd Robbelen G. (1982). Z. Pflanzenzuecht89: 278.
  79. Sheehy, RE. et a! (1988). Proc. Nat. Acad. Sci. USA 85: 8805-8809
  80. Smith, Cl.D. etal. (1988). Nature 334: 724-726.
  81. Smulders, M.J. eta/. (1997). Theor. App/. Genet. 94: 264-272. I
  82. Stalker. D.M et a! (1990). In: Plant genetic engineering. D. Grierson (ed). Blackie. Glasgow, Scotland, pp 82-104.
  83. Taiyoung, P. et a/. (1995). J. Kor. Soc. Hort. Sci. 36: 805-811.
  84. Timmerman, G.M. eta/. (1993). Theor. App/. Genet. 85: 609-615.
  85. Timmerman, G.M. eta! (1994). Theor. App! Genet. 88: 1050-1055,
  86. Wijbrandi, J. and De Both M.TJ. (1993). Scientia Hort. 55: 37-63.
  87. Wills, A.B. et a/. (1979). Ann. Appl. BioI. 91: 263-70.
  88. Wing. R.A. et al. (1994). Mol. Gen. Genet. 242: 681-688.
  89. Young. N.D. and Tauksley, S.D. (1989). Theor. Appl. Genet. 77: 353-359.
  90. Zeicer. A. et a1. (1990). Acta Hart 280: 227-232.

Global Footprints