EFFECTS OF ELEVATED CARBON DIOXIDE AND TEMPERATURE ON INSECT-PLANT INTERACTIONS - A REVIEW

Article Id: ARCC4185 | Page : 200 - 207
Citation :- EFFECTS OF ELEVATED CARBON DIOXIDE AND TEMPERATURE ON INSECT-PLANT INTERACTIONS - A REVIEW.Agricultural Reviews.2006.(27):200 - 207
M. Sreenivasa Rao, M.A. Masood Khan, K. Srinivas, M. Vanaja, G.G.S.N. Rao and Y.S. Ramakrishna
Address : Central Research Institute for Dryland Agriculture (CRIDA) Santoshangar, Hyderabad, A.P. - 500 059, India

Abstract

Production of embryos in vitro (in vitro Fertilization technology) provides an excellent and cheap source of embryos for carrying out basic research on developmental physiology, farm animal breeding and for commercial application of the emerging biotechniques like cloning and transgenic livestock production. Embryos of high genetic quality can be obtained from oocytes collected from slaughtered house ovaries or from donors of high genetic quality by ultrasound guided follicular aspiration. Despite technological progress in the last two decades, the practical application of in fertilization technology (IVF) is still less than anticipated because of low efficiency and high cost. Recent data indicate high rate of meiotic maturation (> 85% in cattle, >80% in buffalo), fertilization (> 80% in cattle, >70% in buffalo) and cleavage (> 70% in cattle, >50% in buffalo) but low rates of blastocyst formation (~ 30% in cattle, ~25% in buffalo) and calf production (~10%) and some with severe anomalies. The efficiency of in vitroembryo production (IVP) in buffalo is much lower than in cattle. Substantial improvements in culture systems are needed and many physical, biochemical, molecular, immunological factors affecting the development of oocytes and embryos remain to be investigated before in vitroembryo production can be acceptable. The optimization of IVP of embryos and the analysis of the related problems are the major challenges to be addressed.

Keywords

References

  1. Agrell, J. et al. (2005). Glob. Change Biol., 11(4): 588-599.
  2. Bazin, A. et al. (2002). Ecol. Ent., 27: 271-278.
  3. Bernklau, E.J. and Bjostad, L.B. (1998). J. Econ. Ent., 91: 444-456.
  4. Bezemer, T.M. et al. (1998). Oecologia., 116: 128-135
  5. Bezemer T.M. and Jones T.H. (1998). Oikos., 82: 212-222.
  6. Brooks, G.L. and Whittaker, J.B. (1999). Glob. Change Biol., 5: 395-401.
  7. Buse, A. et al. (1998) Func. Ecol., 12: 742-749.
  8. Butler, G.D. Jr. et al. (1986). Env. Ent., 15: 61-63.
  9. Caulfield, F. and Bunce, J.A. (1994). Env. Ent., 23: 999-1005.
  10. Chen, F.J. et al. (2004). J. Appl. Ent., 128: 723-730.
  11. Chen, F. et al. (2005). Env. Ent., 34(1): 37-46.
  12. Coviella, C.E. and Trumble, J.T. (2000). Biocontrol., 45: 325-326.
  13. Coviella, C.E. and Trumble, J.T. (1999). Cons. Biol., 13(4): 700-712.
  14. Doane, J.F. et al. (1975). Canad. Ent., 107: 1233-1252
  15. Dury, S.J. et al. (1998). Glob. Change Biol., 4: 55-61.
  16. 206 AGRICULTURAL REVIEWS
  17. Goverde, M. et al. (1999). Func. Eco., 13: 801-810.
  18. Goverde, M. et al. (2002). Ecology., 83: 1399-1411.
  19. Goverde. M. et al. (2004). Oecologia., 139: 383-391.
  20. Hattenschwiler, S. and Schafellner C. (2004). Glob. Change Biol., 10: 1899-1908.
  21. Holton, K.M. et al. (2003). Oecologia., 137: 233-244.
  22. Hughes, L. and Bazzaz F.A. (2001). Ent. Exp. Appli., 99: 87-96.
  23. Hughes, L. and Bazzaz, F.A. (1997). Oecologia., 109: 286 -290.
  24. Hunter, M.D. (2001). Agri. and Forest Ent., 3: 153-159.
  25. IPCC (2001). Climate Change 2001: Intergovernmental Panel on Climate Change, Geneva.
  26. Johns, C.V and Hughes, L. (2002). Glob. Change Biol., 8: 142-152.
  27. Johns.C.V. et al. (2003). Ent. Exp. Appli., 108: 169-178.
  28. Kopper, B.J. and Lindroth, R.L. (2003). Oecologia., 134: 95-103.
  29. Kuokkanen, K. et al. (2003). Agric. and Forest Ent., 5: 209-217.
  30. Lindroth, R.L. et al. (1993). Ecology, 74(3): 763-777.
  31. Mevi-Schutz, J. et al. (2003). Behav. Ecol. Sociobiology, 54: 36-43
  32. Roth, S.K. and Lindroth, R.L. (1995). Glob. Change Biol., 1: 173-182
  33. Smith, P.H.D. and Jones, T.H. (1998) Glob. Change Biol., 4: 287-291
  34. Srivastava, A.C. et al. (2002). Curr. Sci., 82(9): 1148-1150.
  35. Stange, G. et al. (1995). Oecologia., 102: 341-352.
  36. Stange, G. (1992). J. Comp. Phys. A: Sensory Neural and Beh. Phys., 171: 317-324.
  37. Strnad, S.P. et al. (1986). Env. Ent., 15: 839-842.
  38. Thompson, R.D. (1989). Progr. Physic. Geogr., 13: 315-347.
  39. Traw, M.B. et al. (1996). Oecologia., 108: 113-120.
  40. Tuchman, N.C. et al. (2002). Glob. Change Biol., 8: 163-170.
  41. Veteli T.O. et al. (2002). Glob. Change Biol., 8(12): 1240-1252.
  42. Watt, A.D. et al. (1995). In: Insects in a Changing Environment (Harrington, R. and Stork, E. eds), Symp. Royal Ent. Soc. Acad. Press, London, pp. 198-217.
  43. Whittaker, J.B. (2001). J. Ecol., 89: 507-518.
  44. Whittaker, J.B. (1999). Eur. J. Ent., 96: 149-156.
  45. Williams, R.S. et al. (2003). Oecologia., 137: 114-122.
  46. Williams, R.S. et al. (2000). Glob. Change Biol., 6: 685-695.
  47. Williams, R.S. et al. (1998). Glob. Change Biol., 4: 235-246.
  48. Williams, R.S. et al. (1997). Env. Ent., 26(6): 1312-1322.
  49. Williams, R.S. et al. (1994). Oecologia., 98: 64-71

Global Footprints