Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 28 issue 2 (june 2007) : 107-117

REMEDIATION OF METAL CONTAMINATED SOILS USING PLANTS - A REVIEW

M. Midarkodi
1Radioisoto;>e (Tracer) Laboratory, Departm~nt of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore - 641003, India.
  • Submitted|

  • First Online |

  • doi

Cite article:- Midarkodi M. (2024). REMEDIATION OF METAL CONTAMINATED SOILS USING PLANTS - A REVIEW. Agricultural Reviews. 28(2): 107-117. doi: .
Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the industrial revolution. The primary sources of this pollution are the industrial eifluents, burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, fertilizers, pesticides, sewage etc. Toxic metal contamination of soil, aqueous waster streams and ground water poses a major environmental and human health problem, which is still in need of an effective and affordable technological solution. Unfortunately, heavy metals cannot be chemically degraded. In many ways living plants can be compared to solar driven pumps, which can extract and concentrate certain elements from their environment. Certain plants have the ability to accumulate heavy metals (which have no known biological function) such as Cd, Cr, Ni, Pb, Co, Ag, Se and Hg. At present, phytoremediation of metals may be approaching commercialization. Additional short term advances in phytoremediation are likely to come from the selection of more efficient plant varieties and soil amendments and from optimizing agronomic practices used for plant cultivation. Major long term improvements in phytoremedlation should come when scientists isolate genes from various plants, which can enhance the metal accumulation. However, biology alone cannot make phytoremediation work. In recent years, cooperative research has been conducted by scientists in fields such as soil science, genetics, chemistry, botany and microbiology for developing new technology. As the research matures, It is likely that we will see phytoremediation become an applied technology with in a few years.
    1. Agarwal, S. K. (1996). Industrial Environment Assessment and Strategy. APH Publishing Corporation, New Delhi.
    2. Alloway, B.J. (1990). Heavy Metals in Soils. John Wiley and Sons, New York.
    3. Anderson, C. W. N. et al. (1998). Nature, 395: 553 - 554.
    4. Azad, A. S. (1986). J. Indian Soc. Soil Sci., 34 (3): 619 - 622.
    5. Baker, A. (1981). J. Plant. Nutr., 3: 643 -654.
    6. Baker, A. J. Mand Brooks, R. R. (1989). Biorecovery, 1: 81 -126.
    7. Baker, A. J. M. et aI. (1994a). Res. Consent. RecycJ., 11: 41- 49.
    8. Baker, A. J. M. et al. (1994b). New Phytol., 127: 61- 68.
    9. Barman, S. C and Lal, M. M. (1994). J. Environ. Biol., 15 (2); 107 - 115
    10. Barman, S. C. et al. (2000). Bull. Environ. Contam. Toxicol., 64: 489 - 496.
    11. Bini, M. A. et al. (1999). In: Proceedings of the extended abstract of 5th ICOBTE'99 (Calendula arvensis L. and Calendula officina/is L.), Austria, pp: 1146 -1147.
    12. Blarney, F. P. C.!}t aI. (1986). Plant Soil, 91: 171 - 180.
    13. Blaylock, M. J. et al. (1997). Environ. Sci. Technol., 31: 860 - 865.
    14. Brooks, R. R. (1998). Plants that Hyper Accumulate Heavy Metals. CAB International, Oxon, UK, p - 384.
    15. Brooks, R. R. et al. (1977). J. Geochem. Explor., 7: 49 - 57.
    16. Brown, S. L. et al. (1994). J. Environ. Qual., 23: 1151 -1157.
    17. California Department of Food and Agriculture (CDFA). (1998). Development of Risk Based Concentrations for Ar, Cd and Ph in Inorganic Commercial Fertilizers. Foster Wheeler Environmental Corporation, Sacramento, CA.
    18. Chaney, R. L. et aI. (1997). Curro Opin. Biotechnol., 8: 279 - 284.
    19. Cocking, D. et al. (1995). Water, Air, Soil PalJut., 80: 1113 - 1116.
    20. Cunningham, S. D and Berti, W. R. (1993). In Vitro Cell Dell. BioI., 29: 207 -212.
    21. Cunningham, S. D and Berti, W. R. (2000). In: Phytoremediation of Contaminated Soils, Water (Calendula arvensis L. and Calendula officinaIis L.), CRC press, LLC, Boca Raton, FL, p - 359.
    22. Dufey, J. E. et al. (1999). In: Proceedings of the Extended Abstract of 5th ICOBTE'99, Austria, pp: 164 - 165.
    23. Felix, H. R. et al. (1999). In: Proceedings of Extended Abstracts of 5th ICOBTE' 99, Austria, pp: 233 - 234.
    24. Ganguly, C. et al. (1998). J. Environ. Eng. ASCE, 124: 1150 -1158.
    25. Hinsinger, P. (1999). In: Proceedings of the Extended Abstract of 5th ICOBTE'99, Austria, pp: 152 - 153.
    26. Hinsinger, P. (2001). In: Trace Elements in the Rhizosphere (Gobran G. R. ,et al , eds.), CRC Press LCC, Boca Raton, FL, pp: 25 - 41.
    27. Huang, J. Wand Cunningham, S. D. (1996). New Phytol., 134: 75 - 84.
    28. Huang, J. W. et al. (1997). Environ. Sci. Technol., 31: 800 - 805.
    29. Huang, J. W. et al. (1998). Environ. Sci. TechnoJ., 32: 2004 - 2008.
    30. 116 AGRICULTURAL REVIEWS Ingrouille, M. J and Smirnoff, N. (1986). New Phytol., 102: 219 - 233.
    31. Islam, M. et al. (1999). In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: %2 - %3.
    32. Kabala Pendias,Aand Pendias, H. (2001). Trace Eemen1s in Soils and Plan1s. 31d edition, CRCpress, Boca Raton, Aaida, USA.
    33. Koo Bon Jun et al. (2001). In: Proceedings of the Extended Abstract of 6th ICOBTE'OI, Guelph, p - 56l.
    34. Kramer, U. et aI. (1996). Nature, 379: 635 - 638.
    35. Krishnamurti, G. S. R. et al. (1997). J. Environ. Qua/., 26: 271- 277.
    36. Kumar, P. B. A. N. et al. (1994). Cruciferae News letter, 16: 18 -19.
    37. Lambrecht, S. eta/. (1999). In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: 876 - 877.
    38. Lewis, S. et al. (2001). Aquatic Toxico/., 51: 277 - 29l.
    39. Lue, Y. M. et al. (1999). In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: 882 - 883.
    40. Luo, Y. M. et al. (2001). In: Proceedings of the Extended Abstracts of 6th ICOBTE' 01, Guelph, p - 283
    41. Martell, E. A. (1974). Nature, 249: 215 - 217.
    42. McGrath, S. P. eta/. (1993). In: Integrated Soil and Sediment Research: Abasis for Proper Protection, (Eijsackers, H. J.
    43. P and T. Hamers, eds.), K1uwer Academic Publishers, pp: 673 - 676.
    44. Minguzzi, Cand Vergnano, O. (1998). II. Contenuto di nichel nelle ceneri di Alyssum bertolonii. Desv. Attidella Societa Toscana di Scienze Naturali Mem Ser. A, 55: 49 - 77.
    45. Mitra, Aand Gupta, S. K. (1999). J. Indian Soc. Soil Sci., 47: 99 -105.
    46. Morishita, Tand Boratynski, J. K. (1992). Soil Sci. Plant Nutr., 38: 781 - 785.
    47. Morrey, D. R. etal. (1992).Areview ofsome studies of the serpentine flora of southern Africa (Baker, A. J. M., J. Proctor, R. D. Reeves eds.). The vegetation of ultramafic soils. AndoyeJ, UK, 12: 147 - 157.
    48. MOTtvedt, J(J. (1996). Fert. Res., 43: 55 - 6l.
    49. Murphy, A. et al. (1997). Plant Physio/., 113: 1293 - 130l.
    50. Naidu, R and Mclaughlin, M. J. (1993). Heavy metal contamination of agricultural land and ground water in Tamil Nadu, India and in Australia. Report to ACIAR.
    51. Naidu, Rand Smith, E. (1999). Electro kinetic remediation of metal contaminated soils: Preliminary studies using arsenic contaminated soil. In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: 1024 - 1025.
    52. Naumann, D. et aI. (1995). J. Plant Physiol., 146: 704 - 717.
    53. Panda, A. K. (1996). Indian J. Environ. H/th., 38 (1): 51 - 53.
    54. Pierzynski, M. et aI. (2000). Soils Environmental Quality. 2nd edn., CRC press, LLC, NWCorporate Blvd, Boca Raton, FL, USA.
    55. Punshon, T. et aI. (1999). Cadmium uptake and accumulation characteristics in a range ofvegetable crops. In: Proceeding; of the extended abstract of 5th ICOBTE'99, Austria, pp: 578 - 579.
    56. Ramasamy, K. et aI. (2000). Remediation of Soils Contaminated with Cr due to Tannery Wastes Disposal. In: (Lewise, D et al., eds.), Remediation Engineering of Contaminated Soils, Marcel Dekkeo Publications, New York, pp: 583 - 615.
    57. Raskin, I. et aI. (1997). CUrT. Opin. Biotechno/., 8: 221 - 226.
    58. Rattan, R. K. et aI. (2000). Annual report of the ICAR. APCess fund scheme on ' Heavy metal in sewage effluent - irrigated soils and their utilization by crops'. Division of Soil Science and Agricultural Chemistry, IARI, New Delhi.
    59. Reeves, R. Dand Brooks, R. R. (1983a). J. Geochem. Explor., 18: 275 - 283.
    60. Reeves, R. D. (1992). The hyperaccumulation of nickel by serpentine plan1s. Hampshire, UK. pp: 253 - 277.
    61. .Rivai, I. E et al. (1990a). Bul/. Environ. Contam. Toxico/., 44: 910 - 916.
    62. Rovira, P. S. et aI. (1996). Fert. Res., 43 : 173-177.
    63. Rulkens, W. H. (1999). Ex-situ remediation options and fundamental principles. In: Proceeding; of the extended abstract of 5th ICOBTE'99, Austria, pp: 210 - 21l.
    64. Rulkens, W. H. et aI. (1998). Wat. Sci. Techno/., 37: 27 - 35.
    65. Russel, R. S. (1977). Plant Root Systems: Their Function and Interaction with the Soil. Me Graw - Hill, Maidenhead.
    66. Sagner, S. et al. (1998). Phytochemistry, 47: 339 -347.
    67. Sakal, R. et al. (1992). J. Indian Soc. Soil Sci., 40: 732 - 737.
    68. Salt, D. E. et aI. (1995). Biotechnol., 13: 468 -474.
    69. Salt, D. E. et aI. (1998). Ann. Rev. Plant Physio/. Plant Mol. Bio/., 49: 643 - 668.
    70. Salt, D. E. et aI. (1999). The Role of Root Exudates in Ni Hyper Accumulation and Tolerance in Accumulator and Non Accumulator Species of Thlaspi. In: (Terry, Nand G. S. Banuelos, eds.). Phytoremediation of Contaminated Soil and Water. CRC press, LLC, Boca Raton, FL, 'USA, pp: 191- 202.
    71. Schurawitzki, Kand Horak, O. (1999). Heavy metal uptake by lettuce (Lactuca sativa L.) from different soils and the relationship between mobile soil heavy metals and plant conten1s. In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: 516 - 517. Vol. 28, No.2, 2007 117
    72. Shen, Z. G. et al. (200]). Phytoextraction of Pb from a contaminated soil using high biomass species of plants. In:
    73. Proceedings ofthe extended abstract of 6th ICOBTE'01, Guelph, p - 133.
    74. Siedlecka. A. (1995). Acia Soc. Bot. Pol., 64: 265 - 272.
    75. Singh, A. K. et aI. (2001). J. Indian Soc. Soil Sci., 49 (4): 776 - 778.
    76. Singh, R. S and Singh, R. P. (1994). J. Indian Soc. Soil Sci., 42 (3): 466 - 468..
    77. Som, S. et aI. (1994). J. Indian Soc. Soil Sci., 42 (4): 571 - 575.
    78. Wollgien, R and Naumann, D. (1999). J. Plant Physiol., 154: 547 - 553.
    79. Wong, J. W. C. et al. (1999). Phytostabilization of mimicked cadmium contaminated soil with lime amendment. In: Proceedings of the extended abstract of 5th ICOBTE'99, Austria, pp: 898 - 8g9.
    80. Youssef, R. A. (1997). Soil Sci. Plant Nutr., 43: 10121-10124.
    81. Zayed, A. et al. (1998). J. Environ. Qual., 27: 715 -721.
    82. Zhu, Y. L. et al. (1999). J. Environ. Qual., 28: 339 - 344.

    Editorial Board

    View all (0)