STATUS OF INSECT RESISTANCE TO BACILLUS THURINGIENSIS, MECHANISM AND MANAGEMENT - A REVIEW

DOI: 10.5958/j.0976-0741.34.3.008    | Article Id: ARCC265 | Page : 230-235
Citation :- STATUS OF INSECT RESISTANCE TO BACILLUS THURINGIENSIS, MECHANISM AND MANAGEMENT - A REVIEW.Agricultural Reviews.2013.(34):230-235
S.I. Patel, G.M. Patel1, R.l. Patel2 and A.A. Patel
Address : Centre of Excellence for Research on Wheat, S. D. Agricultural University, Vijapur- 382 870, India

Abstract

Bacillus thuringiensis, commonly known as Bt, a most promising alternative to synthetic insecticides, has been used as an effective bio-pesticide in agriculture since long time. Two insecticidal protein, Cyt (Cytolysins) and Cry (Crystal ä-endotoxin) are the toxic substances responsible for the death of an insect. The durability of this novel insect control technology is questioned as many cases of insect population developing resistance to Bt cry proteins were observed and various mechanisms for resistance to  Bt cry proteins were reported. Management of resistance in insect to Bt includes refugia, gene pyramiding and novel toxins.

Keywords

Bacillus thuringiensis Cry protein Novel toxin Refugia Resistance.

References

  1. Baum, J.A., Johnson, T.B. and Carlton, B.C. (1999). Bacillus thuringiensis : Natural and Recombinant bioinsecticide products. In : [Hall, F.R. and Menn, J.J. (Eds.)]. Biopesticides-Use and Delivery, Humana Press, Totowa, NJ. Pp. 357-375.
  2. Bolin, P. C., Hutchison, W. D. and Andow, D. A. (1999). Long term selection for resistance to Bacillus thuringiensis Cry 1 Ac endotoxin in a Minnosota population of European corn borer (Lepidoptera : Crambidae). J. Econ. Entomol., 92 : 1021-1030.
  3. Brevault, T.; Prudent, P.; Vaissayre, M. Ad Carriere, Y. (2009). Susceptibility of Helicoverpa armigera (Lepidoptera : Noctudae) to Cry 1Ac and Cry 2Ab2 insecticidal protein in four countries of the Western African cotton belt. J. Econ. Entomol., 102 (6) : 2301-2309.
  4. Carpenter, J.; Felsot, A.; Goode, T.; Hammig, M.; Onstad, D. and Sankula, S. (2002). Comparative environmental impacts of biotechnology derived and traditional soybean, corn and cotton crops. Council for Agricultural Science and Technology CAST : 1-189.
  5. Carriere, Y.; Dennehy, T. J.; Pedersen, B.; Haller, S.; Ellers-Kirk, C.; Antilla, L.; Liu, Y. B.; Willott, E. and Tabashnik, B. E. (2001). Large scale management of insect resistance to transgenic cotton in Arizona : Can transgenic insecticidal crops be sustained ? J. Econ. Entomol. 94 : 315-325.
  6. Cerda, H.; Sayyed, A. H. and Wright, D. J. (2006). Diamond back moth resistance to Bacillus thuringiensis transgenic canola : evaluation of refugia size with non-recessive resistant insects. J. Appl. Entomol. 130 : 421-425.
  7. Chakrabarti, S.K.; Mandaokar, A.D.; Anand Kumar, P. and Sharma, R.P. (1998). Synergistic effect of Cry 1Ac and Cry 1F ä-endotoxins of Bacillus thuringiensis on cotton bollworm, Helicoverpa armigera. Current Sci., 75 : 663-664.
  8. Chandrashekhar, K. and Gujar, G.T. (2004). Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry 1Ac in the American Bollworm, Helicoverpa armigera (Hubner). Indian J. Expt. Biol., 42 : 164-173.
  9. Downes, S.; Parker, T. L. and Mahon, R. J. (2010). Characteristics of resistance to Bacillus thuringiensis toxin Cry 2Ab in a strain of Helicoverpa punctigera (Lepideptera : Noctuidae) isolated from a field population. J. Econ. Entomol., 103 : 2147-2154.
  10. Estruch, J. J.; Warren, G. W.; Mullins, M. A.; Nye, G. J.; Craig, J. A. and Koziel, M. G. (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA, 93 : 5389-5394.
  11. Ferre, J.; Real M.D.; Van Rie, J.; Jansens, S. and Peferoen, M. (1991). Resistance to the Bacillus thuringiensis bio- insecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor. Proc. Natl. Acad. Sci. USA, 88 : 5119-5123.
  12. Gahan, L. J.; Ma, Y. T.; Coble, M.L.M.; Gould, F.; Moar, W. J. and Hackel, D. G. (2005). Genetic basis of resistance to Cry 1Ac and Cry 2Aa in Heliothis virescens (Lepidoptera : Noctuidae). J. Econ. Entomol. 98 : 1357-1368.
  13. Gao, Y.; Wu, K.; Gould, F. and Shen, Z. (2009). Cry 2Ab tolerance response of Helicoverpa armigera (Lepidoptera : Noctuidae) populations from Cry 1Ac cotton planting region. J. Econ. Entomol., 102 : 1217-1223.
  14. Gould, F. (1998). Sustainability of transgenic insecticidal cultivars : integrating pest genetics and ecology. Ann. Rev. Entomol., 43 : 701-26.
  15. Gould, F.; Anderson, A.; Jones, A.; Sumerford, D. and Heckel, D.G. (1997). Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field population of Heliothis virescens. Proc. Natl. Acad. Sci. USA, 94 : 3519-3523.
  16. Gould, F.; Martinez-Ramirez A.; Anderson, A.; Ferre, J.; Silva, F.J. and Moar, W.J. (1992). Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA, 89 : 7986-7990.
  17. Gould, J.L. and Keeton, W.T. (1996). Biological Science (6th edition),: W.W. Norton and Company. New York.
  18. Gunning, R.V.; Dang, H.T.; Kemp, F.C.; Nicholson, I.C. and Moores, G.D. (2005). New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry 1Ac toxin. Appl. Environ. Microbiol., 71: 2558-2563.
  19. Huang, F.; Buschman, L.L.; Higgins, R.A. and Li, H. (2002). Survival of Kansas Dipel-resistant European Corn Borer (Lepidoptera : Crambidae) on Bt and Non Bt corn hybrids. J. Econ. Entomol., 95 : 614-621.
  20. Huang, F.; Leonard, B. R. and Andow, D. A. (2007). Sugarcane borer (Lepidoptera : Crambidae) resistance to transgenic Bacillus thuringiensis maize. J. Econ. Entomol., 100: 164-171.
  21. Jackson, R. E.; Marcus, M. A.; Gould, F.; Bradley, J. R. and Van Duyn, J. W. (2007). Cross-resistance responses of Cry 1Ac selected Heliothis virescens (Lepidoptera : Noctuidae) to the Bacillus thuringiensis protein Vip 3A. J. Econ. Entomol., 100: 180-186.
  22. James, C. (2010). Global Status of Commercialized Biotech/GM Crops: 2010. ISAAA Brief No. 42. ISAAA: Ithaca, NY.
  23. Jingjie, A.; Yulin, G.; Kongming, W.; Fred, G.; Jianhua, G.; Zhicheng, S. and Chaoliang, L. (2010). Vip 3Aa tolerance response of Helicoverpa armigera populations from a Cry 1Ac cotton planting region. J. Econ. Entomol., 103: 2169-2173.
  24. Jurat-Fuentes, J. L.; Gould, F. L. and Adang, M. J. (2003). Dual resistance to Bacillus thuringiensis Cry 1Ac and Cry 2Aa toxins in Heliothis virescens multiple mechanisms of resistance. Appl. Environ. Microbiol. 69: 5898-5906.
  25. Liu, Y. B. and Tabashnik, B. E. (1997). Inheritance of resistance to the Bacillus thuringiensis toxin Cry 1C in the diamond back moth. Appl. Environ. Microbiol., 63 : 2218-2223.
  26. Liu, Y.B.; Tabashnik, B.E. and Pusztai-Carey, M. (1996). Field evolved resistance to Bacillus thuringiensis toxin Cry 1C in diamondback moth (Lepidoptera : Plutellidae). J. Econ. Entomol., 89 : 798-804.
  27. Liu, Y.B.; Tabashnik, B.E.; Dennehy, T. J.; Patin A. L. and Bartlett, A. C. (1999). Development time and resistance to Bt crops. Nature, 400 : 519.
  28. Liu, Y.B.; Tabashnik, B.E.; Meyer, S.K.; Carriere, Y. and Bartlett, A.C. (2001). Genetics of pink boll worm resistance to Bacillus thuringiensis toxin Cry 1Ac. J. Econ. Entomol., 91 : 248-252.
  29. Luo, S.; Wu, K.; Tian, Y.; Liang, G.; Feng, X.; Zhang, J. And Guo, Y. (2007). Cross-resistance studies of Cry 1Ac resistant strains of Helicoverpa armigera (Lepidoptera : Noctuidae) to Cry 2Ab. J. Econ. Entomol., 100: 909-915.
  30. McGaughey, W. H. (1985). Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 229 : 193-195.
  31. McGaughey, W. H. and Beeman, R. W. (1988). Resistance to Bacillus thuringiensis in colonies of Indian meal moth and almond moth (Lepidoptera : Pyralidae). J. Econ. Entomol. 81 : 28-33.
  32. Moar W. J.; Pusztai-Carey, M.; Van Fassen, H.; Bosch, D. and Frutos, R. (1995). Development of Bacillus thuringiensis Cry 1C resistance by Spodoptera exigua (Hubner) (Lepidoptera : Noctuidae). Appl. Environ. Microbiol., 61 : 2086-2092.
  33. Mulier-Cohn, J.; Chaufaux, J.; Buisson, C.; Gilois, N.; Sanchis, V. and Lereclus, D. (1996). Spodoptera littoralis (Lepidoptera : Noctudiae) Resistance to Cry 1C and cross-resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol., 89 : 791-797.
  34. Rahardja, U. and Whalon, M.E. (1995). Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis Cry III A ä- endotoxin in colorado potato beetle (Coleoptera : Chrysomelidae). J. Econ. Entomol., 88 : 21-26.
  35. Ramachandran, S.; Buntin, G.D.; All, J.N.; Tabashnik, B.E.; Raymer, P.L.; Adang, M.J.; Pulliam, D.A. and Stewart Jr. C.N. (1998). Survival, development and oviposition of resistant diamondback moth (Lepideptera : Plutellidae) on transgenic canola producing Bacillus thuringiensis toxin. J. Econ. Entomol., 91 : 1239-1244.
  36. Rossiter, M.; Yendol, W.G. and Dubois, N.R. (1990). Resistance to Bacillus thuringiensis in Gypsy moth (Lepidoptera: Lymantriidae): Genetics and Environmental causes. J. Econ. Entomol., 83 : 2211-2218.
  37. Roush, R. T. (1998). Two toxin strategies for management of insect resistant transgenic crops : Can pyramiding succeed where pesticide mixtures have not ? Phil. Trans. Proc. R. Soc. London Ser. B. 353 : 1777-1786.
  38. Schnepf, E.; Crickmore, N.; Van Rie J.; Lereclus, D. and Baum, J. (1998). Bacillus thuringiensis and its pesticidal crystal protein. Microbiol. Mol. Biol. Rev., 62 : 775-806.
  39. Shelton, A. M.; Zhao, J. Z. and Roush, R. T. (2002). Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Ann. Rev. Entomol. 47 : 845-881.
  40. Tabashnik, B.E. (1994). Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol., 39 : 47-79.
  41. Tabashnik, B.E.; Dennehy, T.J.; Sims, M.A.; Larkin, K.; Head, G.P.; Moar, W.J. and Carriere, Y. (2002). Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry 2Ab. Appl. Environ. Microbiol., 68 : 3790-3794.
  42. Tabashnik, B.E.; Gassmann, A. J.; Crowder, D. W. and Carriere, Y. (2008). Insect resistance to Bt crops : evidence versus theory. Nature Biotechnol., 26 : 199-202.
  43. Tabashnik, B.E.; Liu, Y. B.; de Magged, R. A. and Dennehy T. J. (2000). Cross-resistance of pink boll worm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 66 : 4582-4584.
  44. Tabashnik, B.E.; Liu, Y. B.; Finson, N.; Masson, L. and Heckel, D.G. (1997). One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci., USA, 94 : 1640-1644.
  45. Tabashnik, B.E.; Liu, Y. B.; Malvar, T.; Heckel, D. G.; Masson, L. and Ferre, J. (1998). Insect resistance to Bacillus thuringiensis : Uniform or diverse ? Phil. Trans. R. Soc. Lond. B. 353 : 1751-1756.
  46. Tang, J.D.; Collins, H.L.; Metz, T.D.; Earle, E.D.; Zhao, J.Z. ; Roush, R.T. and Shelton, A.M. (2001). Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J. Econ. Entomol., 94 : 240-247.
  47. Van Frankenhuyzen, K. (1993). The challenge of Bacillus thuringiensis. In : [Entwistle, P.E., Cory, J.S.; Baily, M.J. and Higgs, S. (Eds.)] , Bacillus thuringiensis, An environmental biopesticide : Theory and Practice, John Wiley and Sons, Chichester, UK : 1-35.
  48. Warren, G. W.; Koziel, M. G.; Mullins, M. A.; Nye, G. J.; Carr, B.; Desai, N. M.; Kostichka, K.; Duck, N. B. and Estruch, J. J. (1996). Novel pesticidal proteins and strains. Patent WO 96/10083, World Intellectual Property Organization.
  49. Whalon, M. E.; Miller, D. L.; Hollingworth, R. M.; Grafius E. J. and Miller, J. R. (1993). Selection of a Colorado potato beetle (Coleoptera : Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol., 86 : 226-233.
  50. Whalon, M.E. and W.H. McGaughey. (1998). Bacillus thuringiensis : Use and Resistant Management. In : [Ishaya, I. and Degheele, D. (Eds.)], Insecticides with novel mode of action-Mechanism and Application, Springer, Berlin : 106-137.
  51. Wierenga, J.M.D.; Norris, L. and Whalon, M.E. (1996). Stage specific mortality of Colorado Potato Beetle (Coleoptera : Chrysomelidae) feeding on transgenic potatoes. J. Econ. Entomol., 89 : 1047-1052.
  52. Yu, C.G.; Mullins, M.A.; Warren, G.W.; Koziel, M.G. and Estruch, J.J. (1997). The Bacillus thuringiensis vegetative insecticidal protein Vip 3A lyses midgut epithellium cells of susceptible insects. Appl. Environ. Microbiol., 63 : 532-536.
  53. Zhao, J.Z.; Cao, J.; Li, Y.; Collins, H.L.; Roush, R.T.; Earle, E.D. and Shelton, A.M. (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnol., 21 : 1493-1497.

Global Footprints