Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Bi-monthly (February, April, June, August, October & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 30 issue 4 (december 2009) : 301 - 306

AGRICULTURE MANAGEMENT PRACTICES IN RELATION TO SOIL CARBON SEQUESTRATION: A REVIEW

Shachi Shah, V.Venkatramanan*
1Department of Basic Science, College Of Forestry and Hill Agriculture G. B. Pant University of Agriculture and Technology, Hill Campus Ranichauri- 249 199, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Shah Shachi, V.Venkatramanan* (2025). AGRICULTURE MANAGEMENT PRACTICES IN RELATION TO SOIL CARBON SEQUESTRATION: A REVIEW. Agricultural Reviews. 30(4): 301 - 306. doi: .
Growing interest in the potential for agricultural soils to provide a sink for atmospheric
carbon has prompted studies of effects of management on soil organic carbon (SOC)
sequestration. Adding organic matter to land is good for soil quality and crop yields,
both short-term and long-term. While mitigating climate change by off-setting fossil fuel
emissions, it also improves quality of soil and water resources, and enhances agronomic
productivity. Strategies to increase the soil carbon pool include reducing tillage intensity
and frequency, eliminating tillage, changing crop rotations, using winter cover crops,
eliminating summer fallow, improving fertilizer management, adjusting irrigation methods,
changing grazing regimes, soil restoration and woodland regeneration, water conservation
and harvesting, agroforestry practices, and growing energy crops on spare lands. Soil
carbon sequestration is a natural, cost-effective, and environ-mentally-friendly process.
Once sequestered, carbon remains in the soil as long as restorative land use and best
management practices are followed. Creation of a market for reducing carbon emissions
would enable farmers to benefit economically from the process
  1. Antle, J.M. et al., (2002). Environ. Poll. 116 : 413–422.
  2. Antle, J.M. et al., (2003). J. Environ. Eco. and Manag. 46: 231–250.
  3. Baker, et al., (2007). Agr. Eco. and Environ. 118:1–5.
  4. Berzseny, Z. and Gyrffy, B. (1997). Agrok. Mas. Talajtan. 46: 377– 398.
  5. Blevins, R. L and Frye, W. (1993). Adv. Agron. 51: 33-78.
  6. Bordovsky, D.G. et al., (1999). Soil Sci. 164: 331–340.
  7. Bricklemyer, R.S. et al., (2002). Agron. J. 14 (2): 251-261.
  8. Bricklemyer, R.S. et al., (2006). J. Environ. Quality. 35:1341-1347.
  9. Campbell, C.A. et al., (1992). Can. J. Soil Sci.72: 403-416.
  10. Cole, V.et al., (1996): In : Climate Change 1995: Impacts. Adaptations and Mitigation of Climate
  11. Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second
  12. Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University
  13. Press, pp 745-771.
  14. Compton, J. E. and Boone, R.D. (2000). Ecology. 81: 2314– 2330.
  15. Doster, D. et al., (1983). J Soil and Water Conserv. 38: 504-509
  16. Follett, R.F. et al., (2001). In: The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the
  17. Greenhouse Effect. Lewis Publishers, Washington, D.C.MI.pp56
  18. Follett, R F. (2006). Ame Soc Agron Abstracts. 14: 99-204.
  19. Franzluebbers, A. J. and Steiner J. L. (2002). In: Agricultural Practices and Policies for Carbon Sequestration
  20. in Soil. Pp121
  21. Fullen, M. A. et al., (1998). Soil and Tillage Res. 46: 41–49.
  22. Gilley, J. E. and Risse, L. M. (2000). Trans ASAE. 43: 1583– 1588.
  23. Halvorson, A. and Curtis, R. (2007). Fluid J. 15 (3):17-19.
  24. Hopkins, J. et al., (1996). Rev. Agri. Econ. 18: 311-313.
  25. 306 AGRICUTURAL REVIEWS
  26. IPCC (2000). IPCC Special Report on Land Use, Land-Use Change and Forestry. A Special Report of the
  27. Intergovernmental Panel on Climate Change, IPCC Secretariat, World Meteorological Organization,
  28. Geneva.pp—
  29. Kimble, J. M. et al., (2006). Soil Sci. Soc. Am. J. 70: -569.
  30. Kern, J. S. and Johnson, M. G. (1993). Soil Sci. Soc. Am. J .57: 200-210.
  31. Kieft, T.L. (1994). Soil Biol Biochem. 18: 155-162.
  32. Kimble, J. M., et al., (2002). In: Agricultural Practices and Policies for Carbon Sequestration in Soil. pp.512
  33. Klemme, R. A. (1996). Am. J. Agri. Econ. 67:550-557.
  34. Koning, N. et al., (2001). Oxford Develop Studies. 29(2): 189-207.
  35. Lal, R. (1984). Adv Agron. 37:183-242.
  36. Lal R, et al., (1995). Soil Management and Greenhouse Effect. Lewis Publ. Boca Raton, FL. pp 1-8.
  37. Lal, R. (1989). Advan. Agron. 42: 186-197.
  38. Lal, R. (1994). Sustainable Land Use Systems and Soil Resilience, Dans Greenland, D.J. Soil Resilience
  39. and Sustainable Land Use, pp. 41-67. CAB-International, Wallingford, RU.
  40. Lal, R. (1997). Till. Res. 43:81-107.
  41. Lal, R., (1999). Progress Environ. Sci. 1: 307– 326
  42. Lal, R. (2004a). Geoderma. 123 : 1 –22.
  43. Lal, R. (2004b). Science .304: 1623-1627.
  44. Lal, R., et al. (1998). The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse
  45. Effect. Ann Arbor Press, Chelsea, MI. 128 p.
  46. Lobell, D.B., and Asner, G.P., (2003). Geosci. Remote Sens. 41 (6): 1277–1282.
  47. Mann, L.K., 1986. Soil Sci. 142: 279-288.
  48. Nilsson, L.G., (1986). J Royal Swedish Acad Agri Forest Supply. 18: 32–70.
  49. Oldeman, L.R., (1994). In: Soil Organic Matter and Tomato Yield following Tillage, Cover Cropping and
  50. Nitrogen Fertilization .pp 594–602.
  51. Parton, W.J et al., (1987). Soil Sci. Soc. Am. J. 51 (5): 1173–1179.
  52. Parton, W.J et al., (1988). Biogeochemistry . 5 (1): 109–131.
  53. Pendel, D. L. et al., (2005). Soil Sci. Soc. Am. J. 69: 413-422.
  54. Post, W.M. and Kwon, K. C. 2000. Soil Carbon Sequestration and Land-Use Change: Processes and
  55. Potential. Ann Arbor Press, Chelsea.pp34-38
  56. Post, W. M. and Mann, L.K. (2006). J Environ. Qual. 35:1364-1373.
  57. Powell, et al., (2002).In: UK Organic Research: Proceedings of the COR Conference, Aberystwyth, pp 247-249.
  58. Robortson, G.P. et al., (2000). Science. 289:1922-1925.
  59. Russell, E. et al., (2006). J Environ Qual. 35:1548-1553
  60. Sauerbeck, D.R., (2001). Nutrient Cycling Agroecosystems. 60: 253–266.
  61. Smith, P. et al., (1997). Global Change Biol. 3: 67–79.
  62. Smith, P. et al., (2002). Final report to the Indiana Conservation Partnership. Colorado State University Natural Resource Ecology Laboratory and USDA Natural Resources Conservation Service, Fort Collins, CO, USA
  63. Sommerfeldt, T.G. et al., (1988). Soil Sci. Soc. Am. J. 52: 1668– 1672.
  64. Standley, J. et al., (1990). Soil and Tillage Res. 18: 367–388
  65. Stephen, M. et al., (2004). Science. 304 (5677): 1623–1627.
  66. Stephen, J. et al., (1987). Can. J. Agri. Econ. 36,127-131.
  67. Steven, D. et al., (2004). Global Change Biol. 10 (7): 1120–1132.
  68. Sundermeier, A. et al., (2005). Ohio State University Extension Fact Sheet AEX pp. 510-05
  69. Van Dijk, H. (1982). In: Land Use Seminar on Land Degradation. Balkema, Rotterdam. pp 133– 143.
  70. Vanden Bygaart, A. J. et al., (2004). Global Change Biol. 10: 983-994.
  71. West, T.O. and Post, W. M. (2002). Soil. Sci. Soc. Am. J. 66 (6): 930–1046

Editorial Board

View all (0)