Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 30 issue 4 (december 2009) :

ENGINEERING TEMPERATURE TOLERANCE IN AGRICULTURAL CROPS

D S Gill, Tilak Raj
1Department Botany Punjab Agricultural University Ludhiana 141004 (Punjab) India.
  • Submitted|

  • First Online |

  • doi

Cite article:- Gill S D, Raj Tilak (2024). ENGINEERING TEMPERATURE TOLERANCE IN AGRICULTURAL CROPS. Agricultural Reviews. 30(4): . doi: .
Temperature stress due to high temperature is a major problem in agriculture in many areas.
Continuously increasing temperature cause an disorder of physiological and biochemical changes in
crop plants, which affects many growth process i.e. different phenological stages of the crops and
development that may lead to a sharp reduction in grain yield. The detrimental effect of temperature
stress can be mitigated by developing crop plants with thermotolerance using various approaches. For
this, purpose a complete understanding of physiological responses of crop plants to increased
temperature, and possible approaches for improving crop thermotolerance is important. Temperature
stress affects plants development throughout its ontogeny. The threshold levels of temperature differ
considerably at different phenological stages of the crops plants that is during seed germination, the
high temperature the adversely affect photosynthesis, respiration, water relations and membrane
stability, and also changes in hormones and primary and secondary metabolites. Furthermore,
enhanced expression of various heat shock proteins other stress related proteins and production of
reactive oxygen species contribute towards major plants responses to high temperature throughout
plants ontogeny. In order to cope with thermotolerance, various mechanisms including membrane
thermal stability, production of antioxidants, accumulation and adjustment of osmolytes and calcium
dependent proteins kinase, and most importantly transcriptional activation. All these mechanism
which are regulated at the molecular level enable the plants to improve under temperature stress.
Based on thorough understanding of all these mechanisms, potential genetic approaches to improve
plant thermotolerance include molecular breeding and transgenic strategy. There are several examples
of plants with improved thermotolerance through the use of breeding programme. The genetic
transformation approach has been far restricted. This is due to incomplete knowledge and availability
of genes with known effects on thermotolerance plants. There, is an other approach by which heat
tolerance can be increased by preconditioning of plants under various environmental stress or the
osmoprotectants exogenous application that is glycinebetaine and proline. Acquired heat tolerance is
an active process by which considerable amount of plants resources are diverted to structural and
functional maintance to avoid detrimental effect caused by increased temperature. The physiological
and biochemical basis of heat tolerance in crop plants are well known, further studies on assimilate
partitioning under temperature stress and traits controlling crop thermotolerance are needed. These
studies combined with genetic strategies to identify and map genes conferring thermotolerance will
not enhance markers-assisted breeding forthermotolerance but also provided the way for cloning and
characterization of various factors which could be advantageous for engineering crop plants with
improved thermotolerance
  1. Adams. S.R. et al. ( 2001). Ann. Bot., 88: 869-877.
  2. Ahn, Y.J. and Zimmerman: J.L. (2006). Plant Cell Environ., 29: 95-104.
  3. Antikainen, M. and Grifith, M. (1997) Physiol. Plant., 97 : 423-432.
  4. Antunes, M.D.C. Sfakiotakis, E.M., (2000). Postharvest Bio. Technol., 20: 251-259.
  5. Arora: R. et al. (1997). Physiol. Plant., 101: 8-16.
  6. Arshad, M. and Frankenberger, W.T. (2002) Ethylene: Agricultural Sources and Applications.
  7. Kluwer Academic/Plenum Publishers: New York.
  8. Ashraf, M. and Foolad, M.R. (2007) Environ. Exp. Bot., 59: 206-216.
  9. Bannu, EFEOGLU (2009). G.U. Journal of Science., 22(2): 67-75.
  10. Banowetz, G.M. et al. (1999). Ann. Bot., 83: 303-307.
  11. Barua, D. et al. (2003) Funct. Plant Biol., 30: 1071-1079.
  12. Behl, R.K. et al. (1996). Der Tropenlandwirt.,97: 131-135.
  13. Blumenthal, C. et al.(1990). Nature., 347 : 325.
  14. Bohnert, H. I. et al. (2006). Plant Biol., 9:180-188.
  15. Bowen J. et al. (2002).J. Plant Physiol., 159: 599-606.
  16. Bowers, M.C. (1994). Plant Environment Interactions. R.E. Wilkinson (eds). Marcel
  17. Dekkar: New York: pp. 31-34.
  18. Camejo, D. et al. (2005) J. Plant Physiol., 162: 281-289.
  19. Comis, D. (1992). USDA Agric. Res., 40: 14-16.
  20. De Ronde, et al. (2004). J. Plant Physiol., 61: 1211-1244.
  21. Dhaliwal, G.S. and Kler, D. (1995) Principles of Agricultural Ecology. Himalaya Publishing
  22. House: Bombay.
  23. Fenglu, Z., et al.(1997). J. China Agric. Univ., 2: 85-89.
  24. Feussner, K., et al. (1997). FEBS Lett. 409: 211-215.
  25. Fadzillah, N.M., et al.(1996). Planta., 199: 552–556.
  26. 26
  27. Graham, D. and Patterson, B.D (1982). A. Rev. Pl. Physiol., 33: 347-372.
  28. Guilioni, L. et al. (2003). Funct. Plant Biol., 30: 1151–1164.
  29. Guy, C.L. (1990). Cold acclimation and freezing stress tolerance: Role of protein
  30. metabolism. A. Rev. Pl. Physiol. Pl. Mol. Biol., 41: 187-223.
  31. Hajela, R.K.. et al. (1990). Pl. Physiol., 93: 1246-1252.
  32. Hall, A E., (2001). Crop Responses to Environment CRC Press LLC, Boca Raton, Florida.
  33. Holappa, L.D. and Walker-Simmons, M.K. (1995). Pl. Physiol., 108: 1203-1210.
  34. Howarth, C.J. (2005). Plant Resistance Through Breeding and Molecular Approaches. Howarth Press
  35. Inc., New York.
  36. Hughes, M.A. and Dunn, M.A. (1996). J. Expt. Bot., 47: 291-305.
  37. Ingram, J. and Bartel, D. (1996). A. Rev. Pl. Physiol. Pl. Mol. Biol., 47: 377.
  38. Iba, K. ( 2002). Annu. Rev. Plant Biol., 53: 225–245.
  39. Jaglo-Ottosen, K.R., et al. (1998). Science., 280: 104-106.
  40. Jiang, C., Lu, B. and Singh, B. (1996). Adv. Agron., 63: 77-151.
  41. Kavi Kishore. et al. (1995). Pl. Physiol., 108: 1387-1394.
  42. Kawano, T. et al. (1998). Plant Cell Physiol., 39: 721730.
  43. Kepova, K.D. et al. (2005). Biol. Plant., 49: 521-525.
  44. Klein, J.D. et al. (2001). Acta Hortic., 553: 95-98.
  45. Kodama, H. et al. (1995). Pl. Physiol., 107: 1177-1185.
  46. Kojma, M. et al. (1998). Phytochemistry., 47: 1483-1487.
  47. Korotaeva, N.E. et.al (2001). Rasten., 29: 271-276.
  48. Laloi, M. et al. (1997). Nature., 389: 135-136.
  49. Lee, J.H., Hubel, A. and Schoffl, F. (1995). Pl. J., 8: 603-612.
  50. Lindquist, S. (1986). A. Rev. Biochem., 55: 1151-1191.
  51. 27
  52. Liu, N. et al. (2006). Plant Sci., 170: 976-985.
  53. Liusia, J. et al. (2005). Physiol. Plant., 124: 353–361.
  54. Loss, S.P. and Siddique, K.H.M. (1994). Adv. Agron., 52: 269-276.
  55. Maestri, E. et al. (2002). Plant Mol. Biol., 48: 667-681.
  56. Mahajan. V. et al. (1993). Field Crops Res., 34: 71-82.
  57. Marchand. et al. (2005). Global Change Boil., 11: 2078-2089.
  58. Maresca, B. and Cossins, A.R. (1993). Nature., 365: 606-607.
  59. McAinsh, M.R. et al. (1990). Nature., 343: 186-188.
  60. McKersie, B.D. and Ya’acov, Y.L. (1994). Stress and Stress Coping in Cultivated Plants.
  61. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  62. Moffat, J.M. et al. (1990). Crop Sci., 30: 881-885.
  63. Momcilovic, I.and Ristic, Z., (2007). J. Plant Physiol., 164: 90-99.
  64. Moore, P.D. (1998). Nature., 393: 419-420.
  65. Morita, S. et al. (2004). Jpn. J. Crop. Sci., 73: 77-83.
  66. Munne-Bosch, S. et al. (2002). Physiol. Plant., 114: 380-386.
  67. Murata, N. et al.(1992). Nature., 356: 710-713.
  68. Nakamoto, H., and Hiyama, T., (1999). In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress.
  69. Marcel Dekker, New York, pp. 399-416.
  70. Nascimento, W.M., et al. (2004). Scientia Agricola., 61: 156-163.
  71. NDong, C. et al. (1997). Pl. Cell Physiol., 38: 863-870.
  72. Neta-Sharir, I. et al. (2005). Plant Cell., 17: 1829-1838.
  73. Neumann, D.M., et al. (1993). Planta ., 190: 32-43.
  74. Nilsen, E.T. and Orcutt, D.M. (1996). Abiotic Factors. John Wiley and Sons, Inc., New
  75. York.
  76. 28
  77. Nishida, I. and Murata, N. (1996). A. Rev. Pl. Physiol. Pl. Mol. Biol., 47: 541-568.
  78. Nollen, E.A.A., and Morimoto, R.I., (2002). J. Cell Sci., 115: 2809-2816.
  79. Panchuk, I. I., et al. (2002). Plant Physiol., 129: 838-853.
  80. Pearce, R.S. and Ashworth, E.N. (1992). Planta., 188: 327-331.
  81. Pearcy, R.W. et al. (1977). Pl. Physiol., 59: 873-878.
  82. Peet, M.M., and Willits, D.H., (1998). Agric. Forest Meteorol., 9: 191-202.
  83. Pei, Z.M., et al. (1998). Science., 282: 287-290.
  84. Porter, J.R., (2005). Nature., 436:174.
  85. Prasinos, C. et al. (2005). J. Exp. Bot., 56: 633-644.
  86. Psenner, R. and Sattler, B. (1998). Science., 280: 2073-2074.
  87. Queitsch, C. et al. (2000). Plant Cell., 12: 479-492.
  88. Sairam, R.K. and Tyagi, A., (2004). Curr. Sci., 8: 407–421.
  89. Saini, H.S. and Lalonde, S. (1998) J. Crop Prod., 1: 223-248.
  90. Salvucci, M.E. and Crafts-Brandner, S.I., (2004b). Physiol. Plant., 120: 179-186.
  91. Schoffl, E, et al. (1999). In: Shinozaki, K., Yamaguchi-Shinozaki, K. (Eds.), R.G. Landes Co.,
  92. Austin, Texas, pp. 81-98.
  93. Seemann, J.R. et al. (1986) Pl. Physiol., 80: 926-930.
  94. Sharkova, V.E. (2001). Russ. J. Plant Physiol., 48: 793-797.
  95. Sheen, J. (1996). Science., 274: 1900-1902.
  96. Singh, O.S. et al. (1971). Indian J. agric. Sci., 41: 300-304.
  97. Singla, S.L. et al. (1996). Plant Ecophysiology. John Wiley and Sons, Inc. New York, pp.
  98. 101-127.
  99. Stelljes, K.B. (1997). Agric. Res., (USDA) 45: 21.
  100. Stone, P.J. and Nicol´as, M.E., (1994). Aust. J. Plant Physiol., 21: 887–900.
  101. Summerfield, R.J. and Lawn, R.J. (1987). A commentary. Outlook Agric., 16: 189-192.
  102. 29
  103. Sung, D.Y. et al. (2003). Trends Plant Sci., 8: 179-187.
  104. Taiz, L. and Zeiger, E., (2006). Plant Physiology. Sinauer Associates Inc. Publishers, Massachusetts.
  105. Toth, S. Z. et al. (2005). J. Plant Physiol., 162: 181-194.
  106. Uemura, M. et al. (1995). Pl. Physiol., 109: 15-13.
  107. Umemoto, T. et al. (1995). Phytochemistry., 40: 1613-1616.
  108. Vettakkorumakankav, et .al. (1999). Plant Cell Physiol., 40: 542-548.
  109. Veziana, L.P. et al. (1996). Plant Ecophysiology. John Wiley and Sons, Inc., New York,
  110. pp. 61-100.
  111. Vinocur, B. and Altman, A, (2005). Currt. Opin. Biotechnol., 16: 123-132.
  112. Wahid, A, (2007). J. Plant Res., 120: 219-228.
  113. Wahid, A. and Ghazanfar, A., (2006). J. Plant Physiol., 163: 723–730.
  114. Wahid, A., and Close, T.J. (2007). Biol. Plant., 51: 104–109.
  115. Wang, D. and Luthe, D.S. (2003). Plant Physiol., 133: 319-327.
  116. Wang, H. et al. (1995). Pl. Mol. Biol., 28: 605-617.
  117. Wang, L. J. and Li, S.H., (2006a). Plant Growth Regul. 48: 137-144.
  118. Wang, L. J. and Li, S.L. (2006b). Plant Sci., 170: 685-694.
  119. Wang, W. et al (2004). Trends Plant Sci., 9: 244-252.
  120. Wardlaw, I. E, (1974). Mechanism of Regulation of Plant Growth. Bull. Royal Soc., New Zealand,
  121. Wellington, pp. 533-538.
  122. Wardlaw, I. E. et al. (2002). Funct. Plant BioI., 29: 25-34.
  123. Wardlaw, I. F. et al. (1989). Aust. J. agric. Res., 40: 15-24.
  124. Wise, R. R. et al. (2004). Plant Cell Environ., 27: 717-724.
  125. Worral, D. et al. (1998). Science., 282: 115-116.
  126. Xiong, L. et al. (2002). J. Biol. Chem., 277: 8588–8596. 30
  127. Yamada, M. et al. (1996). Sci. Hortic., 67: 39-48.
  128. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). Pl. Cell., 6: 251-264.
  129. Yamane, Y. et al. (1998). Photosynth. Res., 57: 51-59.
  130. Yang, J. Sears. et al. (2002). Euphytica., 125: 179-188.
  131. Yang, KA. et al. (2006). Plant Sci., 171: 175-182.
  132. Yoshiba, Y. et al. (1997). Plant Physiol., 25:124-126
  133. Young, L.W. et al. (2004). J. Exp. Bot., 55: 485-495.

Editorial Board

View all (0)