Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 30 issue 2 (june 2009) : 94 - 107

NITROUS OXIDE EMISSION FROM SOILS - AREVIEW

M.Sangeetha, R.Jayakumar, C.Bharathi
1Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore-641 003, India.
  • Submitted|

  • First Online |

  • doi

Cite article:- M.Sangeetha, R.Jayakumar, C.Bharathi (2024). NITROUS OXIDE EMISSION FROM SOILS - AREVIEW. Agricultural Reviews. 30(2): 94 - 107. doi: .
Nitrous oxide is produced in soils by denitrification and nitrification processes. It is
affected by many physical and biochemical factors i.e. aeration/moisture status of the
soil, nature and amount of organic matter, nitrate concentration, pH and texture. These
factors interact with microorganisms on a microscale level in the soil, creating a large
variation in denitrification and influence N20/N ratio. Management practices suggested
to mitigate nitrous oxide emission from soils are matching nitrogen supply with crop
demand, use of controlled release fertilizers, use of nitrification inhibitors, optimization
of tillage, irrigation and drainage etc, which are all having the potential to improve
nitrogen use efficiency.
  1. ALGAS. (1998). In: National Report on Asia Least Cost Greenhouse Gas Abatement Strategy, Ministry of Environment and Forest, Government of India, New Delhi.
  2. Aulakh, M.S. et al. (1984). Soil BioI. Biochem. 16: 351-356.
  3. Aulakh, M.S. et al. (1991). Soil Sci. Soc. Am. J. 55: 1020-1025.
  4. Aulakh, M.S. et al. (1992). Adv. Soil Sci. 18: 2-42.
  5. Baggs, E.M. et al. (2003). Plant Soil. 254: 361-370.
  6. Ball, B.C. et al. (1999). Soil Till. Res. 53: 29-39.
  7. Bhatia, A et al. (2004). Curr. Sci. 87: 317-325.
  8. Blackmer, AM. and Bremner, J.M. (1978). Soil BioI. Biochem. 10: 187-191.
  9. Bonin, P. et al. (2002). Water Res. 36: 722-732.
  10. Breitenbeck, G.A. and Bremner, J.M. (1986). BioI. Fertil. Soils. 2: 201 - 204.
  11. BremnerJ.M., and Blackmer AM. (1978). Science. 199: 295-296.
  12. Buresh, R.J. and Patrick, w.H. (1978). Soil Sci. Soc. Am. J. 42: 913-918.
  13. Burford, J.R. and Bremner, J.M. (1975). SoilBiol. Biochem. 7: 389-394.
  14. Burton D.L. and Beauchamp E.G. (1985). Commun. Soil Sci. Plant Anal. 16: 539-549.
  15. Cai, Z. etal. (1997). Pl. Soil. 196: 7-14.
  16. Cardenas, L.M. etal. (2003). Soil BioI. Biochem. 35: 867-870. Vol. 30, No.2, 2009 105
  17. Chalk, P.M. and Smith, C.J. (1983). In: Gaseous Loss of Nirrogen from Plant-Soil Systems. (Freney, J. R. and Simpson, J. Reds.) pp. 65-89. .
  18. Chang, C. et aI. (1998). Soil Sci. Soc. Am. J. 62: 35 - 38.
  19. Cheng, W. etaI. (2002). Nutr. Cycl. Agroecosys. 63: 231-238.
  20. Cho, C.M. and Sakdinan, L. (1978). Canadian J. Soil Science. 58: 443-457.
  21. Choudhary, MA etal. (2002). Agric.Ecosyst. Environ. 93:33-43.
  22. Chu, H. et aI. (2004). Soil Sci. Plant Nutr. 50: 287 - 292..
  23. Cochran, \1.L. et aI. (1981). Soil Sci. Soc. Am. J. 45: 307 - 310.
  24. Davidson, EA (1992). Soil Sci. Soc. Am. J. 56: 95-102.
  25. Del Grosso, S.J. et aI. (2005). Soil TIllage Res. 83: 9-24.
  26. Denmead, O.T. (1979). Soil Sci. Soc. Am. J. 43: 89-95.
  27. Dobbie, K.E. and Smith, K.A (2001). European J Soil Sci. 52: 667-673.
  28. Dorland, S. and Beauchamp, E.G. (1991). Canadian J. Soil Sci. 71: 293-303.
  29. Duxbury, J.M. et aI. (1982). Nature. 298: 462-464.
  30. Ellert, B.H. and Janzen, H.H. (2008). Can. J. Soil Sci. 88: 207-17.
  31. Elmi, AA et aI. (2003). BioI. Fertil. Soils. 38: 340-348.
  32. Firestone, M.K. and Davidson, EA (1989). In: Exchange ofTrace Gases between Terrestrial Ecosystems and the Atmosphere. (Andreae, M.O. and Schimel, D.S. eds.) John Wiley and Sons, New York. pp.7-21.
  33. Firestone, M.K. etaI. (1980). Science. 208: 749-751.
  34. Flessa, H. and Beese, E (2000). J. Environ.QuaI. 29: 262-268.
  35. Freney, J.R (1997). Nutr. Cycl. Agroecosys. 49: 1-6.
  36. Freney,J.R etal. (1979). Soil BioI. Biochem.ll: 167-173.
  37. Garg, A et aI. (2003). Future GHG and Local Emissions for India: Policy Unks and Disjoints. Mitigation and Adaptation Strategies for Global Change, Kluwer Academic Publishers. pp. 71-92.
  38. Granli, T. and Bockman, O.C. (1994). Norwegian J ofAgric Sci Suppl, 12: 7-128.
  39. Groffman, P.M. (1991). In: Microbial Production and Consumption ofGreenhouse Gases: Methane, Nitrogen Oxides, and halomethanes. (Rogers J.E. and Whitman, W.B. eds.), American Society for Microbiology, Washington D.C. pp. 201-217.
  40. Haynes, RJ. (1986). In: Mineral Nitrogen in the Plant-Soil System. (Haynes, RJ. ed.) Academic Press, New York. pp.127-165.
  41. Hutchinson, G.L. and Brams, EA (1992). J. Geophys. Res. 97: 9889-9896.
  42. Hutchinson, G.L. and Mosier, AR (1981). Soil Sci. Soc. Am. J. 45: 311 - 316.
  43. Inubushi, K. etaI. (1999). BioI. Fertil. Soils. 29: 401-407.
  44. IPCC, Climate Change (2007). The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC. 2007, Cambridge University Press, NewYork.
  45. IPCC. (1996). In: Climate Change (1995), Impacts, Adaptations and Mitigation of Climate Change.
  46. Scientific Technical Report Analyses. Contribution of working group II to the second assessment report ofthe Inter Governmental Panel on Climate Change. (Watson, RT. Zinyowera, M.C. and Ross, RH. eds), Cambride and New York, p.880.
  47. IPCC. (2007). IPCC WGI Fourth Assessment report, summary for policymakers. 106 AGRICUTURAL REVIEWS
  48. Iqbal, M. (1992). J Agric Sci. 118: 223-227.
  49. Itokawa, H. et al. (2001). Water Res. 35: 657-664.
  50. Kammann, C. et al. (2001). European J Soil Sci. 52: 297-303.
  51. Keerthisinghe,D.G. etaJ. (1993). Fert. Res. 45: 31-36.
  52. Kessavalou, A et al. (1998). J. Environ.Qual. 27: 1105-1116.
  53. Kroeze, C. etal. (1999). Global Biochem Cycles. 13: 1-8.
  54. Kumar, U. et a/. (2000). Curr. Sci. 79: 224 - 228.
  55. Uu, x.J. et al. (2006). Plant Soil. 280: 177-188
  56. Low, AP.et a/. (1997). Soil Sci. 162: 16-27.
  57. Mahmood, T.etal. (2008). BioI. Fertil. Soils. 44: 773-781.
  58. Majumdar, D. (2000). Curro Sci. 79: 1435-1439.
  59. Majumdar, D. et a/. (2000). J. Indian Soc. Soil Sci, 48: 732 -741.
  60. Malia, G. etal. (2005). Chemosphere. 50: 141-147.
  61. Martikainen, P.J. and Boer, W.O. (1993). Soil BioI. Biochem. 25: 343 -347.
  62. Masscheleyn, P.H. etal. (1993). Chemosphere. 26: 251-260.
  63. Mckenney, D.J. et a/. (2001). Soil Sci. Soc. Am. J. 65: 126-132.
  64. Menendez, S. et al. (2008). Eur. J. Agron. 28: 559-69.
  65. Menyailo, O.v. etal. (1997). Pochvovedenie. 1997: 213-215.
  66. Minami, K (1994). In: CH4 and N20: Global emissions and controls from rice field and their
  67. agricultural and industrial sources. (Minami, K et al. eds.). NIAES, Yokendo, Tokyo.
  68. Minami, K. (2005). Pedosphere. 15: 164-172.
  69. Monteny, G.J. etal. (2006). Agric. Ecosyst. Environ. 112: 163-170.
  70. Mosier, A R. et al. (1998). Climatic Change. 40: 7-38.
  71. Mosier, AR. (1994). Fert. Res. 37: 191-200.
  72. Mosier, AR. and Schimel, D.S. (1991). Chemistry and Industry. 23: 874-877.
  73. Murakami, T. et al. (1987). Soil Sci. Plant Nutr. 33: 35-42.
  74. Pathak, H. (1999). Curr. Sci. 77: 359 - 369.
  75. Pathak, H. and Nedwell, D.B. (2001). Water, Air, Soil Pollut. 129: 217-228.
  76. Reay, D.S. et al. (2003). Global Change BioI. 9: 195-203.
  77. Regina, K et a/. (2004). Eur. J. Soil Sci. 55: 591-599.
  78. Ritchie, G.A.F. and Nicholas, D.J.D. (1972). Biochem.J. 126: 1181-1191.
  79. Robertson, G.P. etal. (2000). Science. 289: 1922-1925.
  80. Rolston, D.W. et al. (1982). Soil Sci. Soc. Am. J. 46: 289-296.
  81. Ruser, R. etal. (2001). Nutr. Cycl. Agroecosys. 59: 177-191.
  82. Ryden, J.e. and Lund, L.J. (1980). Soil Sci. Soc. Am. J. 44: 505-511.
  83. Sahrawat, KL. and Keeney, D.R. (1986). Adv. Soil Sci. 4: 103 - 148.
  84. Sanchez-MartYn, L. et al. (2008). Soil BioI. Biochem. 40: 1698-1706.
  85. Shoji, S. et al. (2001). Commun. Soil Sci. Plant Anal. 32: 1051-1 070.
  86. Sitaula, K and Bakken, L.R. (1993). Soil BioI. Biochem. 25: 1415 - 1421.
  87. Six, J. et a/. (2004). Global Change BioI. 10: 155-160.
  88. Smith, C.J. et al. (1982). Soil Sci. Plant Nutr. 28: 161 - 171.
  89. Vol. 30, No.2, 2009 107
  90. Sovik, AK and Klove, B. (2007). Sci. Total Environ. 380: 2~37.
  91. Stevens, R.J. and Laughlin, R.J. (1998). Nutr. Cycl. Agroecosys. 52: 131-139.
  92. Tallec, G. et al. (2008). Bioresour. Technol. 99: 2200-2209.
  93. Vallejo, A et al. (2005). Plant Soil. 272: 313-325.
  94. Verma, A et a/. (2008). Environ Monit Assess. 137: 287-293.
  95. Wan, Y. et a/. (2009). Soil Sci. Soc. Am. J. 73: 102-112.
  96. Wang, WJ; and Rees, RM. (1996). In: Progress in Nitrogen Cycling Studies: Proceedings of the 8th Nitrogen Workshop (Van Cleemput, O. and Hofman, G. eds.) Kluwer Academic Publishers, The Netherlands. pp. 659-662.
  97. Weier, KL. (1999). Soil BioI. Biochem. 31: 1931-1941.
  98. Weier, KL. et a/. (1993). Soil Sci. Soc. Am. J. 57: 66-72.
  99. W3odarczyk, T. (2000). Acta Agrophys. 28:39-89.
  100. Zou, J.W et a/. (2007). Atmos Environ. 41: 8030-42.
  101. Zumft, WG. and Kroneck, P.M.H. (1990). In: Denitrification in Soil and Sediment. (Revsbech, N.P. and Sorensen, J. eds.) Plenum Press, New York. pp. 37-55.

Editorial Board

View all (0)