Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 31 issue 3 (september 2010) : 184 - 193

ROLE OF SECRETED PHOSPHOPROTEIN 1 (SPP1) GENE IN BOVINES– A REVIEW

D. Chakraborty, Ashwani Sharma, M.S. Tantia1 Avtar Singh, H.M. Yathish
1Dairy Cattle Breeding Division, National Dairy Research Institute, Karnal- 132 001, India
  • Submitted|

  • First Online |

  • doi

Cite article:- Chakraborty D., Sharma Ashwani, Singh Avtar Tantia1 M.S., Yathish H.M. (2024). ROLE OF SECRETED PHOSPHOPROTEIN 1 (SPP1) GENE IN BOVINES– A REVIEW. Agricultural Reviews. 31(3): 184 - 193. doi: .
Secreted phosphoprotein 1 (SPP1) popularly known as osteopontin (OPN) is a highly
phosphorylated glycoprotein that is a prominent component of the mineralized extracellular
matrices of bones and teeth. It is found in milk, plasma, urine and expressed in several tissues.
Comparative sequence analysis of the bovine OPN cDNA in various species has revealed both
conserved and non-conserved sequences. This gene is located in BTA 6 and having 7 exons.
SPP1 gene has roles in bone mineralization, cancer metastasis, cell-mediated immune responses,
inflammation and cell attachment. Polymorphisms in cattle and buffaloes were reported by various
workers. SPP1 gene has potent roles in growth, production and reproduction of the animals.
This gene is said to be associated with various traits like milk yield and milk compositions,
growth and body weight, stillbirth and dystocia, mastitis and infections in bovine. OPN is reported
to upregulate and promote the expression and secretion of Th1 cytokines. SPP1 variants are
associated with mastitis resistance. SPP1 is involved in muscle regeneration after injury. There is
increase in SPP1 expression in subclinical cows compared to control cows in Johne’s disease.
OPN has an important anti-apoptotic factor in many circumstances. As SPP1 gene is a good
candidate gene for traits like stillbirth, dystocia, protein percentage of milk, twinning rate etc, it
has great potential to be used in marker assisted selection and hence in improving genetic progress
in cattle breeding.
  1. Abel, B., et al., (2005). J. Immunol., 175:6006–6013.
  2. Alain, K., et al., (2009). BMC Genomics, 10:444
  3. Allan, M. F., et al., (2007). J Anim Sci., 85:341-347.
  4. Appelberg, R. U. I. (1994). Immunobiology, 191:520–525.
  5. Ashkar, S. A., et al., (2000). Science, 287:4860–4864.
  6. Ashwell, M. S., et al., (2004). J. Dairy Sci., 87:468–475.
  7. Atkins, K., et al., (1998). J. Cell. Physiol., 175:229–237.
  8. Baruch, E., et al., (2006). Genetics, 172: 1757–1765.
  9. Bayless, K.J., et al., (1997). Protein Expr. Purif., 9:309–314.
  10. Brown, L.F., et al., (1992). Mol Biol Cell., 3:1169–1180.
  11. Butler, W.T., et al., (1996). In Principles of Bone Biology, pp 167–181. New York: Academic Press Inc.
  12. Cancel, A.M., et al., (1997). Biol Reprod, 57(6):1293-1301.
  13. Cancel, A.M., et al., (1999). Biol Reprod., 60:454–460.
  14. Cohen, M., et al., (2004). 29th Int. Soc. Anim. Genetics, Tokyo, Japan.
  15. Cohen-Zinder, M., (2005). Genome Research, 15: 936–944.
  16. 192 AGRICULTURAL REVIEWS
  17. Crivello, J.F. and Delvin, E. (1992). J. Bone and Mineral Research, 7: 693–699.
  18. Da Silva, A.P., (2006). J. Cell. Physiol., 208(3): 629-639.
  19. Denhardt, D.T. and Guo, X. (1993). FASEB J., 7:1475- 1482.
  20. Denhardt, D.T., et al., (2001). Journal of Clinical Investigation, 107: 1055–1061.
  21. Erikson, D. W., et al., (2007). Reproduction, 133(5):909-917.
  22. Fet, V., et al., (1989). Genomics 5: 375-377.
  23. Franzen, A. and Heinegard, D. (1985). Biochem J., 232:715-724.
  24. Giachelli, C.M. and Steitz, S. (2000). Matrix Biology, 19: 615–622.
  25. Goetsch, S.C., et al., (2003). Physiol Genomics, 14: 261–271.
  26. http://en.wikipedia.org/wiki/Osteopontin
  27. http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&dopt=default&list_uids=6696&rn=1
  28. Hynes, R.O. (1987). Cell, 48: 549–554.
  29. Ichikawa, H., et al., (2009). J Hepatobiliary Pancreat Surg, 16(2):197-203.
  30. Ishibashi, J., et al., (2005). J. Cell Biol., 171:471–482.
  31. Johnson, G. A., et al., (2003). Biol. Reprod., 69:1458–1471.
  32. Karcher, E. L., et al., (2008). J. Dairy Sci., 91:3079–3091.
  33. Kerr, J. M., et al., (1991).Gene,108:237–243.
  34. Khalifeh, M. S., and Stabel, J. R. (2004). Vet. Immunol. Immunopathol., 99:39–46.
  35. Khatib, H., et al., (2007). J. Dairy Sci., 90:2966–2970.
  36. Leonard, S., et al., (2005). J. Dairy Sci., 88:4083–4086.
  37. Malval, L., et al., (2008). J. Exp. Med., 205 (5):1145-1153
  38. Miller, D. (1997). Molec Hum Reprod., 3:669–676.
  39. Nadesalingam, J., et al., (2001). Mamm. Genome, 12:27–31.
  40. Nagatomo, T., et al., (2004). Clin. Exp. Immunol., 138:47–53.
  41. Nau, G. J., et al., (1999). Infect. Immun. 67:4223–4230.
  42. Nemir, M., et al., (2000). J. Biol. Chem., 275:969–976.
  43. Oldberg, A., et al., (1986). Proc Natl Acad Sci., USA 83:8819-8823.
  44. Olsen, H. G., et al., (2004). J. Dairy Sci., 87:690–698.
  45. Olsen, H.G., et al., (2005). Genetics, 169:275–283.
  46. Olsen, H. G., et al., (2009). Animal Genetics, 41: 273-280.
  47. Oztabak, K., et al., (2008). Acta Agriculturae Scand Section A, 58: 109-112.
  48. Pareek, C.S., et al., (2008). J. Agrobiology, 25: 121-124.
  49. Pataraca, R., et al., (1989). J. Exp. Med. 170: 145-162.
  50. Rangaswami, H., et al., (2006). Trends Cell Biol., 16:79–87.
  51. Rodriguez, C. M., et al., (2000). J. Andrology, 21(3):414-420.
  52. Ron, M., et al., (2001). Genetics, 159:727–735.
  53. Schnabel, R. D., et al., (2005). Proc. Natl. Acad. Sci. USA, 102:6896–6901.
  54. Siiteri, J.E., et al., (1995). Mol Reprod Dev., 40:16–28.
  55. Sodek, J., et al., (2000). Crit. Rev. Oral Biol. Med., 11(3): 279-303.
  56. Stabel, J. R. (2000). Am. J. Vet. Res., 61:754–760.
  57. Standal, T., et al., (2004). Exp. Oncol., 26(3):179–184.
  58. Tantia, M. S., et al., (2008). Animal, 2 (7): 987–990.
  59. Vinatier, D. 1995. Eur J Obstet Gynecol Reprod Biol., 59:71–81.
  60. Vol. 31, No. 3, 2010 193
  61. Weber, G. F., et al., (2002). J. Leukoc. Biol., 72:752–761.
  62. Weber, G.F. and Cantor, H. (1996). Cytokine and Growth Factor Reviews, 7: 241–248.
  63. Weintraub, A. S., et al., (2004). Pediatr. Res., 55:419–424.
  64. White, S. N., et al., (2007). J. Anim. Sci., 85:1–10.
  65. Wykes, S.M., et al., (1997). Mol Hum Reprod., 3:15–19.
  66. Young, M. F., et al., (1990). Genomics 7: 491-502.
  67. Zhang, Q., et al., (1990). J. Biol. Chem., 265: 7583–7589.
  68. Zhang, Q., et al., (1998). Genetics, 149:1959–1973

Editorial Board

View all (0)