PRODUCTION OF VERMICOMPOST FROM AGRICULTURAL WASTES- A REVIEW

Article Id: ARCC1352 | Page : 172 -183
Citation :- PRODUCTION OF VERMICOMPOST FROM AGRICULTURAL WASTES- A REVIEW.Agricultural Reviews.2010.(31):172 -183
T. Barik*, J.M.L. Gulati, L.M. Garnayak and D.K. Bastia bariktrilochan@yahoo.com
Address : Department of Agronomy, Orissa University of Agriculture and Technology, Bhubaneswar 751 003, India

Abstract

A cris-cross review on vermicompost from agricultural wastes reveals that C-N ratio, pH, moisture
content and temperature of the substrates are the most important parameters for proper
vermicomposting as they determine the litter palatability in detrivorus earthworms. Feed material
having C-N ratio less than 40 can be used successfully for vermicomposting. A temperature of 18 to
250C and moisture content of 40 to 60% were most congenial. Substrate treatment by bioinoculants
and or addition of rock phosphate enriches the vermicompost through increase in the total nitrogen
and available phosphorus and potassium content of vermicompost. Vermicompost prepared out of
the mixture of crop residues amended with cow-dung in the ratio of 1:1 also exhibits higher nutrient
content. Mixed culture of Eisenia foetida, Eudrilus eugeniae and Perionyx excavatus in
vermicomposting shows higher multiplication rate of the worms. Cow-dung has widely been accepted
as the best substrate provided its pH is below 9.5. Cereal and leguminous wastes, tree leaves and
weeds are also found suitable while fresh poultry and pig manure and glyricidia stems are unsuitable.
Vermicompost from obnoxious weeds like Eichhornia crassipes, Salvinia molesta, Lantana camara,
Trapa sp. can be prepared with in 6 to 7 weeks with recovery of about 50 to 53%. Substrates containing
1 to 5% green leaves of leguminous trees can be suitably used for vermicomposting but poisonous
plants or plants sprayed with insecticides are always fatal to the earthworms. Overall high rate of
growth and reproduction of earthworms in the substrates are the best indicators of effective
vermicomposting. Storage of vermicompost beyond 10 weeks decreases the microbial biomass, plant
hormone concentration and enzyme activity.

Keywords

Agricultural wastes Earthworms Lethal materials Vermicomposting

References

  1. Abraham, C. T et. al. (2005). Indian J. Weed Sci., 37: 155-156.
  2. Aira, M. et. al. (2007). J. Environ. Qual., 36: 448-452.
  3. Anonymous. (2002). In: Package of Practices Recommendations: Crops. 12th edition, Edited by Jose, A.I., Paulose, S.,
  4. Prameela, P. and Bonny, B.P. Published by Director of Extension, Kerala Agriculture University. 278 pp.
  5. Anonymous. (2004). In: Proceedings of 6th IFOAM-Asia Scientific Conference “Benign Environment and Safe Food”,
  6. held at Yangpyung, Korea during 7–11 September, 2004.
  7. Aquino, A. M. et. al. (1994). Pesqui. Agropec. Bras., 29: 161–168.
  8. Aranda, E. et. al. (1999). In: Earthworm Management in Tropical Agroecosystems (Lavelle, P., Brussaard, L. and
  9. Hendrix, P. eds). CAB International, UK, 253-288.
  10. Atiyeh, R. M., et. al. (2000). Pedobiologia, 44: 709–724.
  11. Bansal, S. and Kapoor, K. K. (2000). Bioresour. Technol., 73 : 95-98.
  12. Barik, T. et. al. (2005). J. Appl. Zool. Res, 16: 106-107.
  13. Bertoldi, M. et. al. (1984). In: Composting of Agricultural Wastes Gasser, J.K.R. (Ed) Elsavier, London, pp. 27-40.
  14. Biradar, A. P. and Patil, M. B. (2001). Indian J. Weed Sci., 33: 229-230.
  15. Chan, P. L. S. and Griffiths, D. A. (1988). The vermicomposting of pre-treated pig manure. Biol Wastes, 24: 57-69.
  16. Dominguez, J. et. al. (1997). Bio Cycle, 38: 57-59.
  17. Edwards, C. A. (1998). In: Earthworm Ecology, Ed. C.A. Edwards, CRC Press, Boca Raton, FL, 327-354.
  18. Edwards, C. A. and Bohlen, P. J. (1996). Biology and Ecology of Earthworms. 3rd Ed., Chapman and Hall, London.
  19. Edwards, C. A. and Burrows, I. (1988). SPB Academic Publishing; The Hague, The Netherlands.
  20. Eiland, F. et. al. (2001). Compost Sci. Util., 9: 186-197.
  21. Gajalakshmi, S. and Abbasi, S. A. (2004). Bioresou.r Technol., 92: 291-296.
  22. Gajalakshmi, S. et. al. (2001a). Bioresour. Technol., 76 : 177-181.
  23. Gajalakshmi, S. et. al. (2001b). Bioresour. Technol., 80: 131-135.
  24. 182 AGRICULTURAL REVIEWS
  25. Garg, P. et. al. (2006a). Bioresour. Technol., 97: 391-395.
  26. Garg, P. et. al. (2006b). In: Proceedings of the 2nd Joint International Conference on “Sustainable Energy and Environment
  27. (SEE 2006)” held at Bangkok, Thailand during 21-23 November, 2006.
  28. Garg, V. K. et. al. (2005). Appl. Ecol. Environ. Re.s 3: 51-59.
  29. Gaur, A. C., et. al. (1982). Agric. Wastes, 4: 453-460.
  30. Gitanjali, G. (2007). Agric. Sci. Digest, 27 : 270-271.
  31. Gunadi, B. and Edwards, C. A. (2003). Pedobiologia 47: 321–330.
  32. Hallatt, L. (1992). Soil Biol. Biochem., 24 (Special issue ISEE 4. Proceedings of the “4th International Symposium on
  33. Earthworm Ecology”, Ed. A. Kretzschmar, held at Avignon, France during June 11-15, 1990) : 1333-1340.
  34. Hendriksen, N. B. (1990). Biol. Fertility Soils 10: 17-21.
  35. Ismail, S. A. (1995). In: Organic Agriculture Ed. Thampan, P.K., Peekay Tree Crops Development Foundation,
  36. Chochin. pp. 77-100.
  37. Ismail, S. A. (1997). Orient Longman Limited, Chennai, pp. 92.
  38. Jeyabal, A. and Kuppuswamy, G. (2001). Eur. J. of Agron., 15: 153-170.
  39. Kale, R. D. (1986). J. Soil. Biol. Ecol., 6: 98-103.
  40. Kale, R. D. et. al. (1982). Pedobiologia, 23: 419–425.
  41. Khwairakpam, M. and Bhargava, R. (2007). In: Proceedings of the International Conference on Sustainable Solid
  42. Waste Management, held at Chennai, India during 5 - 7 September 2007, pp. 282-288.
  43. Kumar,, a V. and Singh, K. P. (2001). Bioresour. Technol., 76: 173-175.
  44. Loh, T. C., et. al. (2005). Bioresour. Technol., 96 : 11–114.
  45. Manivannan, S., et. al. (2004). J. Exp. Zool., 7: 29-37.
  46. Mba, C. C. (1989). Rev. Biol. Trop., 37: 11-14.
  47. Mba, C. C. (1996). Resour. Conserv. Recycling, 17: 219–226.
  48. Mitchell, A. (1997). Soil. Biol. Biochem., 29: 763-766.
  49. Moreira, H. M., et. al. (1993). UNIMAR. Ciencias, 1: 48-51.
  50. Muyima, N. Y. O. et. al. (1994). Soil. Biol. Biochem., 26: 973-976.
  51. Nagavallemma, K. P. et. al. (2004). Global Theme on Agrecosystems Report No. 8. Patancheru, Andhra Pradesh,
  52. India, 20 pp.
  53. Nair, J. et. al. (2006). Bioresour. Technol., 97: 2091-2095.
  54. Palsania, J., et. al. (2008). Appl. Ecol. . Environ. Res., 6: 49-61.
  55. Pramanik, P. et. al. (2007). Bioresour. Technol., 98: 2485-2494.
  56. Raghavendra, Ali, et. al. (2001). Curr. Res., 30: 35-37.
  57. Ramalingam, R. (2001). J. Exp. Zool., 4: 267-272.
  58. Reinecke, A. J., et. al. (1992). Soil Biol. Biochem., 24: 1295-1307.
  59. Sailajakumari, M. S., and Ushakumari, K. (2002). J. Trop. Agric., 40: 27-30.
  60. Salkinkop, S. R., et. al. (2005). Monthly Magazine Published by Coffee Board, (May 2005) pp. 1.
  61. Shanthi, N. R., et. al. (1993). Compost Sci. Util., 1: 27-30.
  62. Sharma, S. and Vasudevan, P. (1999). In: Proceedings of the R´99 Congress (Recovery, Recycling, Re-integration),
  63. Vol. 31, No. 3, 2010 183
  64. held at Indian Institute of Technology, New Delhi during February 1999.
  65. Sherman, R. (2003). Raising Earthworms Successfully. Publication Number: EBAE 103-83. North Carolina State
  66. University, Raleigh, NC. Published by North Carolina Cooperative Extension Service, pp. 26.
  67. Singh, A. and Sharma, S. (2002). Biores. Technol., 85 : 107-111.
  68. Singh, N. B., et. al. (2005). Appl. Ecol. Environ. Res., 4: 85-97.
  69. Suthar, S. (2008). Ecolo. Eng., 32: 206-214.
  70. Tripathy, G. and Bharadwaj, P. (2005). J. Appl. Biol. Sci., 31: 150-159.
  71. Werner, M., and Cuevas, J. R. (1996). Bio Cycle, 37: 60-62.
  72. Wong, S. H. and Griffiths, D. A. (1991). World J. . Microbiol. . Biotechnol.,7: 593-595.

Global Footprints