MICROBIAL MECHANISMS OF HEAVY METAL TOLERANCE- A REVIEW

Article Id: ARCC1347 | Page : 133 - 138
Citation :- MICROBIAL MECHANISMS OF HEAVY METAL TOLERANCE- A REVIEW.Agricultural Reviews.2010.(31):133 - 138
M. Gomathy and K.G. Sabarinathan1
Address : Tamil Nadu Agricultural University, Coimbatore - 641 003, India

Abstract

Potential cellular mechanisms may be involved in the resistance and tolerance of
microorganisms to excess concentrations of heavy metals in the environment. Generally, the
strategy adopted by microorganisms aims to avoid the build up of excess metal levels, and thus
to prevent the onset of toxicity symptoms. This is achieved by the use of various mechanisms
that are present and likely to be employed in general metal homeostasis. It appears likely that
specific mechanisms are employed for specific metals in particular species. Research carried out
on this area is discussed in this review paper

Keywords

Microbiwal mechanisms Heavy metal

References

  1. Aksu, Z.(1992)The biosorption of copper (II) by C. Vulgaris and Zramigera. Environ. Technol., 13: 579-586
  2. Byers, B. R., Powell M.V., and Lankford C.E. (1967) Iron-chelating hydroxamic acid (schizokinen) active in
  3. initiation of cell division in Bacillus megaterium. J. Bacteriol., 93:286–294.
  4. Davis, W. B., McCauley M.J. and Byers B.R.. (1971) Iron requirements and aluminum sensitivity of a hydroxamic
  5. acid-requiring strain of Bacillus megaterium.J. Bacteriol., 105:589–594.
  6. Ercole, C. VegIio, F. Toro L., Ficara, G and. Lepidi, A. (1994). Immobilisation of microbial cells for metal adsorptin and
  7. desorption. In: Mineral Bioprocessing II. Snowboard. Utah
  8. Gadd, G.M. (1988) Heavy metal and radionucIide by fungi and yeasts. In: P.R. Norris and D.P. Kelly (Editors),
  9. Biohydrometallurgy. A. Rowe, Chippenham, Wilts., U.K.
  10. Garrison, J. M., and Crumbliss A.L.. (1987). Kinetics and mechanism of aluminum(III)/siderophore ligand exchange:
  11. mono(deferriferrioxamine B) aluminum(III) formation and dissociation in aqueous acid solution. Inorg. Chim.
  12. Acta., 138:61–65.
  13. Huyer, M., and Page W.J. (1988) Zn21 increases siderophore production in Azotobacter vinelandii. Appl. Environ.
  14. Microbiol., 54:2625–2631.
  15. Kuyucak, N. and Volesky, B. (1988).Biosorbents for recovery of metals from industrial solutions. Biotechnol. Left., 10
  16. (2): 137-142
  17. Miller, R.. (1995) Biosurfactant-facilitated remediation of metal contaminated soils, Environ, health perspec., 103:59-62.
  18. Nies, D. H. (1999) Microbial heavy metal resistance. Appl. Microbial. Biotechnol. 51:730-750
  19. Roane, T. M. and Pepper, I. L. (2000).Microorganisms and metal pollution, In environmental Microbiology, edited by
  20. Maier R M, Pepper I L and Gerba. C B (Academic Press, London, NW 1 7BY.UK), 55.
  21. Rubinelli, P., Siripornadulsil, S., Gao-Rubinelli, F., and Sayre, R.T. (2002). Cadmium- and iron-stress-inducible gene
  22. expression in the green alga Chlamydomonas reinhardtii: Evidence for H43 protein function in iron assimilation.
  23. Planta 215: 1–13.
  24. Winkelmann, G., A. Barnekow, D. Ilgner, and H. Za¨hner. (1973) Stoffwechselprodukte von Mikroorganismen. 120.
  25. Mitteilung. Eisenaufnahme bei Neurospora crassa. Arch. Mikrobiol. 92:285–300

Global Footprints