Loading...

TRANSFORMATION STUDIES IN PEA – A REVIEW

Article Id: ARCC1339 | Page : 68 - 72
Citation :- TRANSFORMATION STUDIES IN PEA – A REVIEW.Agricultural Reviews.2010.(31):68 - 72
M. Vignesh, P.S. Shanmugavadivel1, M. Prabha2 and E. Kokiladevi*
Address : Indian Agricultural Research Institute, PUSA, New Delhi- 110012, India.

Abstract

Transformation is emerging as an important crop improvement tool. Crop breeding programs are
devised to accumulate alleles from within the gene pool and from cross-compatible wild species.
Transformation theoretically expands the sources of genes for plant improvement to all organisms,
far beyond the gene pool accessible via sexual hybridization. Advances in genetic engineering through
recombinant DNA technology and spatial and temporal targeted expression of genes facilitated transfer
of precise gene sequences. A key component of most functional genomics approaches is a highthroughput
transformation system useful for developing various gene identification strategies.
Transformation also offers strategies for over expressing or suppressing endogenous genes. Pea is an
important crop plant with well-defined genetics, and many pea genes have been isolated and studied
in other species. Thus, introducing new genes or manipulating endogenous gene expression via
transformation generates new phenotypic variation useful for investigating gene function and for
crop improvement. This review is an attempt to summarize the studies on regeneration and genetic
transformation in pea.

Keywords

Transformation studies Pea

References

  1. Anand, R.P. et al. (2001). Current Science 80: 671-674.
  2. Bhagwat, B. and Duncan, E.J. (1998). Sci. Hort. 73: 11-22.
  3. Casey, R. (2003) In: Industrial Proteins in Perspective. Progress in Biotechnology. Vol. 23. (Aalbersberg, W.Y, Hamer,
  4. R.J, Jasperse, P, de Jong, H.J, de Kruif, C.G, Walstra, P, de Wolf, F.A Eds.), Elsevier Science BV, Amsterdam,
  5. pp. 49-55.
  6. Chandra, A. and Pental, D. (2003). Current Science 84: 381-387.
  7. De Kathen, A. and Jacobsen, H.J. (1990). Plant Cell Rep. 9: 276-279.
  8. de Sousa-Majer, M.J. et al. (2004). J. Exp. Bot. 55: 497-505.
  9. Grant, J.E. et al. (1995). Plant Cell Rep. 15: 254-258.
  10. Griga, M. et al. (1995). Euphytica 85: 335-339.
  11. Jain, A.K. et al. (2001). Eur. J. Biochem. 4: 59-67.
  12. James, C. (2001). International Service for the Acquisition of Agribiotech Applications (ISAAA), Brief No. 24.
  13. Jones, A.L. et al. (1998). J. Gen. Virol. 79: 3129-3137.
  14. Khan, A.J. et al. (2001). Euphytica 120: 409-414.
  15. Kowalski, B. and Cassells, A.C. (1999). Potato Res. 42: 121-130.
  16. Larkin, P.J. and Scowcroft, W.R. (1981). Theor. Appl. Genet. 60: 197-214.
  17. Linnemann, A.R. and Dijkstra, D.S. (2002). Crit. Rev. Food. Sci. Nutr. 42: 377-401.
  18. Nadolska-Orczyk, A. and Orczyk, W. (2000). Molecular Breeding 6: 185-194.
  19. Pniewski, T. and Kapusta, J. (2005). J. Appl. Genet. 46: 139-147.
  20. Polowick, P.L. et al. (2000). Plant Sci. 153: 161-170.
  21. Puonti-Kaerlas, J. et al. (1990). Theor. Appl. Genet. 80: 246-252.
  22. Puonti-Kaerlas, J. et al. (1992). Theor. Appl. Genet. 84: 443-450.
  23. 72 AGRICUTURAL REVIEWS
  24. Sagan, M. et al. (1994). Plant Science 100: 59-70.
  25. Schroeder, H.E. et al. (1993). Plant Physiology 101: 751-757.
  26. Smykal, P. et al. (2007). Plant Cell Rep. 26: 1985-1998.
  27. Somers, D.A. et al. (2003). Plant Physiology 131: 892-899.
  28. Svabova, L. and Lebeda, A. (2005). J. Phytopathol. 153: 52-64.
  29. Timmerman-Vaughan, G.M. et al. (2001). Crop Science 41: 846-853.
  30. Trieu, T.A. et al. (2000). Plant J. 22: 531-541.
  31. Tzitzikas, E.N. et al. (2004). Plant Cell Rep. 23: 453-460.
  32. Welham, T. and Domoney, C. (2000). Plant Sci. 159: 289-299.
  33. Zair, I. et al. (2007). Plant Cell Tissue Organ. Cult. 73: 237-244.

Global Footprints