CONSTRATNS PERCEIVED BY MEMBERS OF MANIPUR (INDIA) MILK PRODUCERS COOPERATIVE UNION IN PRACTICING IMPROVED DAIRY FARMING

Asheibam Shyam Singh*, Khajan Singh, Ritu Chakravarty, V.G. Vairagar and Chandan Kumar

Dairy Extension Division
National Dairy Research Institute, Karnal-132 001, India

Received: 19-09-2011 Accepted: 13-03-2012

ABSTRACT
The study was conducted in the state Manipur to identify and quantify the various constraints faced by the dairy farmers of Manipur Milk Producers Cooperative Union in practicing the improved dairy farming practices. Four districts of Manipur namely Imphal East, Imphal West, Thoubal and Bishnupur were selected purposively because all the 88 registered milk cooperative societies are located in these districts. Five villages from one block each of the districts were selected randomly where registered milk cooperative societies were located. Six members those who were the members of cooperative society and owned the highest number of dairy animals were selected randomly to constitute a total sample size of 120 for the study. It was found that the most serious constraints encountered by the members in different areas of breeding, feeding, management, health care and fodder production in improved dairy farming practices were ‘high cost in treatment of breeding related problem’, ‘high cost of feed ingredients’, ‘scientific management of dairy animals’, ‘high cost of veterinary medicines’, and ‘land for fodder cultivation’ respectively. It was also found that the farmer’s perception towards the overall constraints was highest in the area of health care practices.

Keywords: Constraints, Improved dairy farming practices (IDFPs), Dairy farmers, Manipur milk producers cooperative union.

INTRODUCTION
The state Manipur is located in the North Eastern region of India which contributes only 0.23 percent and 0.08 percent of country’s cattle and buffalo population (Anon., 2008). Eighteenth livestock census registered that the state had 69,000 crossbred cattle, 3,49,000 indigenous cattle and 77,000 buffalo. The total milk production of the state was 72,920 tonnes with the daily per capita availability of 85 gm (Anon., 2008). The ‘Central Dairy Plant (CDP), Porompat, Imphal’ is the only milk processing unit in Manipur and it was established under the Integrated Dairy Development Programme (IDDP) phase I during 1993-94. The plant was initially constructed with the capacity of 10,000 litres of milk per day but due to the lack of raw milk supply, the plant is presently operating on an average of 7,500 litres per day. The four valley districts viz., Imphal east, Imphal west, Thoubal and Bishnupur were fully covered under IDDP Phase II and the remaining five hill districts viz., Churachandpur, Tamenglong, Senapati, Ukhrul and Chandel encompassed during IDDP phase III (Anon., 2009). Concerted efforts are being made by the government through the implementation of various dairy development programmes in the state such as IDDP, Intensive Cattle Development Programme (ICDP) and National Programme on Cattle and Buffalo Breeding (NPCBB). In spite of all these efforts initiated, statistics still indicates no record of marked improvement in milk production and productivity. Considering the facts mentioned above, the present study was carried out to identify and quantify the various constraints faced by the dairy farmers of Manipur Milk Producers Cooperative Union in practicing the improved dairy farming practices.

*Corresponding author’s address and e-mail: asheibamshyam@yahoo.com Andro Khampokpi Leikai, District-Imphal East-795 149, Manipur, India.
MATERIALS AND METHODS

The study was conducted in the state Manipur. Four districts of Manipur namely Imphal East, Imphal West, Thoubal and Bishnupur were selected purposively because all the 88 registered milk cooperative societies are located in these districts. Five villages from one block each of the districts were selected randomly where registered milk cooperative societies were located. Six members those who were the members of cooperative society and owned the highest number of dairy animals were selected randomly to constitute a total sample size of 120 for the study. The data were collected by personal interview method. All the 120 respondents were interviewed personally at their home or society. The information was ascertained on three point continuum i.e. very serious, serious and not serious with respective scores of 3, 2 and 1. The respective scores for each and every individual constraint within the major areas of Improved Dairy Farming Practices were calculated separately. After pooling the respective scores for major areas, overall scores of constraints were calculated.

RESULTS AND DISCUSSION

The constraints in all areas of improved dairy farming practices such as breeding, feeding, management, healthcare and fodder production practices were identified.

Constraints related to breeding practices: The Table 1 depicts that ‘high cost in treatment of breeding related problem’ (with score 294) was perceived as the most serious constraint. ‘Scarcity of resources to maintain superior breed of milch animal’ (with score 251) stood the second most serious constraint and ‘lack of good breeding bulls’ (with score 221) which stood third in ranking. This finding gains support from the results of Agarwal (2007) and Diana and Rogers (2007). ‘Distant location of veterinary hospital’ (with score 161) and ‘poor conception rate’ (with score 151) were ranked fourth and fifth respectively. ‘Large number of village under the V.E.O’ and ‘lack of AI centres, ill equipped and poor service at AI centres’ were not perceived as so serious constraints as they were placed at sixth and seventh position, respectively. These finding were in line with the results of Diana and Rogers (2007).

The members of the cooperative societies expressed that large number of villages under the V.E.O and lack of AI centres, ill equipped and poor service at AI centres were not perceived as so serious constraints because when the animals are coming into heat the farmers inform to VFA (Veterinary Field Assistant), then within few hours VFA used to come for AI, but they offer high charge Rs. 150-200 per AI depending upon the distance from the sub AI centre. High cost in treatment of breeding related problem and scarcity of resources to maintain superior breed of milk animal were perceived as very serious constraints as it may be due to the low economic status since the cooperative members were mostly marginal and small holders with 1-2 crossbred cows.

Constraints related to feeding practices: The results presented in Table 2 show that among the various constraints pertaining to feeding practices ‘high cost of feed ingredients’ (with score 360) was perceived as the most serious constraint. Diana and Rogers (2007), Bhagat et al (2005), and Channappagouda (2010) also observed similar findings in their respective studies. ‘Lack of knowledge about preparation and feeding of

| TABLE 1: Constraints related to breeding practices |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Constraint statements | Very Serious | Serious (3) | Not Serious (2) | Total Weighted (1) | Rank Score |
| High cost in treatment of breeding related problem | 54 | 66 | 0 | 294 | I |
| Scarcity of resources to maintain superior breed of milch animal | 18 | 95 | 7 | 251 | II |
| Lack of good breeding bulls | 29 | 43 | 48 | 221 | III |
| Distant location of veterinary Hospital | 0 | 41 | 79 | 161 | IV |
| Poor conception rate | 0 | 31 | 89 | 151 | V |
| Large number of village under the V.E.O | 0 | 6 | 114 | 126 | VI |
| Lack of AI centres, ill equipped and poor service at AI centres | 0 | 0 | 120 | 120 | VII |
Constraints related to feeding practices: Table 2 revealed that the most serious constraint perceived by the members related to feeding practices was the ‘high cost of feed ingredients’ (with score 360). The second most serious constraint as perceived by the members was ‘lack of knowledge about preparation and feeding of concentrate’ (with score 277). ‘Scarcity of green fodder’ (with score 234) stood third in ranking and this findings were gain supported from the results of Rehman et al. (2005). ‘Lack of awareness about treatment of poor quality straw to improve its nutritive value’ (with score 186) was perceived fourth most serious constraints faced by the members. ‘Distant location of market for purchasing concentrate and mineral mixture’ (with score 173) stood fifth position among the listed constraints. ‘Prevalence of the belief that colostrums feeding is unhygienic and it may be harmful to calf’ was not a constraint to the members of the union.

High transportation charge incurred during importation from outside the state may be the reasons for expressing high cost of feed ingredients and concentrates. The low knowledge regarding preparation and feeding of concentrates may be due to less exposure to training programmes and low extension contacts.

Constraints related to management practices: Table 3 revealed that the most serious constraint perceived by the members related to management practices was the ‘scientific management of dairy animals’ (with score 334). The second most serious constraint as perceived by the dairy farmers in areas of management practices was the ‘limited resources for providing scientific housing to dairy animals’ (score 293). The third and fourth constraint perceived were the ‘lack of knowledge about right time of drying off pregnant dairy animal’ (with score 185) and ‘lack of knowledge about the clean milk production’ (with score 183). Rehman et al. (2005) and Diana and Rogers (2007) also observed similar findings in their studies. The least serious constraint in management practices was the ‘scarcity of clean drinking water facilities for dairy animals’ (with score 150).

The farmers expressed that no training or limited training has been organized in their village or at district level which might be the reason for lack of knowledge in scientific management of dairy...
animals, clean milk production, right time of drying off pregnant dairy animal and clean milk production.

Constraints related to healthcare practices: The results presented in Table 4 show that ‘high cost of veterinary medicines’ (with score 335) was the most serious constraint perceived by the members, which gains support by Bhagat et al. (2005). This was again followed by ‘lack of knowledge regarding treatment of dairy animal diseases’ (with score 263) which stood second. This findings gain support by Diana and Rogers (2007). The third constraint was the ‘lack of knowledge of deworming practices of animal’ (with score 218), and the least constraint as perceived by the members related to healthcare was the ‘distant location of veterinary hospital/non availability of veterinary hospital’ (with score 209).

Constraints related to fodder production practices: Table 5 clearly shows that ‘land for fodder cultivation’ (with score 352) was the most serious constraint in the area of fodder production practices. ‘Importance given to growing food and cash crop than fodder cultivation’ (with score 328) was the second most serious constraint perceived by members of IDFPs. Further, the member perceived the ‘inadequate knowledge in fodder cultivation’ (with score 264) was the third constraint and this was parallel with the finding of Channappagouda (2010). ‘Inadequate irrigation facility’ (with score 178), ‘poor availability of High Yielding Variety seeds (HYV) for fodder cultivation’ and ‘fodder crop get damaged due to unfavourable weather condition’ were not perceived as serious constraints.

Since almost all the respondents were small and marginal farmers, they generally preferred to grow food and cash crop rather than fodder. The respondents felt that growing of fodder crops will not provide enough food supplementation throughout the year. Inadequate knowledge in fodder cultivation and poor availability of High Yielding Variety seeds may be due to the results of less exposure to training programme and absence of extension contact; as a result farmers were negligent about fodder cultivation. On the other hand, cent percent respondents used radio as a source of information and they informed that agriculture and farming system programmes are broadcasted frequently but there are less radio programmes related to dairying.

Mean score of constraints in various areas of dairy farming: The mean score of each area of IDFPs were worked out which is shown in Table 6.
TABLE 6: Mean Score of constraints in different areas of IDFPs.

<table>
<thead>
<tr>
<th>Areas of IDFPs</th>
<th>Mean Score</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare</td>
<td>256.25</td>
<td>I</td>
</tr>
<tr>
<td>Management</td>
<td>229.00</td>
<td>II</td>
</tr>
<tr>
<td>Fodder production</td>
<td>227.67</td>
<td>III</td>
</tr>
<tr>
<td>Feeding</td>
<td>225.00</td>
<td>IV</td>
</tr>
<tr>
<td>Breeding</td>
<td>189.14</td>
<td>V</td>
</tr>
</tbody>
</table>

It was found that farmer’s perception of constraints was highest in the healthcare area with the mean score of 256.25, which were followed by management, fodder production, feeding and breeding practices. Vyas and Patel (2001) also reported healthcare practices were ranked first among the various constraints in adoption of dairy technology.

ACKNOWLEDGEMENTS

The authors are highly thankful to Director and Registrar, National Dairy Research Institute, Karnal for providing necessary facilities for conducting this research work. The authors are also grateful to Dr. R.K. Josmee Singh, Asst. Prof., School of Social Sciences, College of Post Graduate Studies, Barapani (C.A.U) for his valuable suggestions and guidance during the entire course of this work.

REFERENCES