Antibacterial activity of aqueous and ethanolic extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz against pathogenic bacteria of cow mastitis

Shumin Sun¹², Weichang Dai³, Hansong Yu¹, Yuhua Wang¹, Xuelin Wang² and Shuai Peng*³

College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.

Received: 05-12-2015 Accepted: 01-05-2015

DOI: 10.18805/ijar.5960

ABSTRACT

As the problems of bacterial resistance and safety of dairy products have become more prominent, alternative medicine for antibiotics in treating cow mastitis is needed. In the present study, antibacterial activity of aqueous and ethanolic extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz against the main pathogenic bacteria (*Escherichia coli*, *Staphylococcus aureus*, *Streptococcus agalactiae* and *Streptococcus dysgalactiae*) of cow mastitis was evaluated using disc diffusion method. The results showed that aqueous and ethanolic extracts of the two herbs both could inhibit the four pathogenic bacteria of cow mastitis at different level. All extracts of the two herbs displayed the highest antibacterial activities against *Escherichia coli* than other bacteria. For *Portulaca oleracea* L., ethanolic extracts had higher antibacterial activities than aqueous extracts except for against *Escherichia coli*. However, for *Taraxacum mongolicum* Hand.-Mazz, ethanolic extracts had lower antibacterial activities than aqueous extracts. These results indicate that extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz have the potential to be used in treating cow mastitis.

Key words: Antibacterial activity, Cow mastitis, *Portulaca oleracea* L., *Taraxacum mongolicum* Hand.-Mazz.

INTRODUCTION

Mastitis causes huge economic losses in dairy industry including reduced milk production, discarded milk, treatment costs and higher risk of abortion (Sharma et al., 2013). It has been estimated that the economic losses associated with clinical mastitis was approximately $179 per case of mastitis in the United States (Bar et al., 2008). As clinical mastitis frequently occurs in dairy cows, reasonable treatment of the disease is necessary. Traditionally, antibiotics have been widely used in treating cow mastitis. However, as the problems of bacterial resistance and safety of dairy products have become more prominent (Suriyasathaporn et al., 2012), searching for alternative medicine to antibiotics in treating cow mastitis has been a hot spot. Plant extracts have been proposed as an important research content of searching for alternative medicine for antibacterial agent, and intensive studies have been conducted in recent years (Dubreuil et al., 2013). Some plant extracts have been used in treating clinical mastitis on organic dairy farm and demonstrated with good therapeutic effect (Pinedo et al., 2013). *Portulaca oleracea* L., a medicinal herb, had been widely used in treating diarrhea of human and animals in China and demonstrated with anti-inflammatory and anti-oxidation effects by recent studies (Abd El-Azime et al., 2014; Lee et al., 2012). Previous studies had shown that *Taraxacum mongolicum* Hand.-Mazz, a traditional Chinese herbal medicine, had anti-inflammatory effects (Kuo-Hua et al., 2013). In the present study, inhibitory effects of aqueous and ethanolic extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz on pathogenic bacteria of cow mastitis were evaluated.

MATERIAL AND METHODS

Bacterial strains: *Escherichia coli*, *Staphylococcus aureus*, *Streptococcus agalactiae* and *Streptococcus dysgalactiae* were used in this study. All these bacterial were isolated from clinical mastitis in dairy cows, and pathogenicity of these bacterial was confirmed in our laboratory.

Medicinal herbs: *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz (dry spices) were purchased from a local drugstore in Hohhot.

Preparation of the aqueous extracts of medicinal herbs: *Portulaca oleracea* L. (100 g) and *Taraxacum mongolicum* Hand.-Mazz (100 g) were crushed and sieved through mesh cloth to get the fine powder, and then the powders were put into beakers containing distilled water to be soaked for 30 min, respectively. Finally, the powders were boiled for 30 min and sieved through double layer of sterile fine mesh.
The filtrates were heated at 50-60°C and concentrated to 100 ml. These extracts (1 g/ml) were stored at 4°C in refrigerator. Extracts of the two herbs were further diluted to make different concentrations (0.5 g/ml, 0.25 g/ml and 0.125 g/ml) by mixing with appropriate volumes of distilled water.

Preparation of the ethanolic extracts of medicinal herbs: Soxhlet extraction method was used to obtain the ethanolic extracts of medicinal herbs. Briefly, powders of the two herbs were extracted with 95% ethanol at 70°C for 6 h, then the ethanol was retrieved from the filtrates by reducing pressure. Finally, 1 g/ml of ethanolic extracts of medicinal herbs were obtained and stored at 4°C in refrigerator. The extracts were further diluted to make different concentrations (0.5 g/ml, 0.25 g/ml and 0.125 g/ml) by mixing with appropriate volumes of distilled water.

Antimicrobial Activity of the extracts using disc diffusion method: *Escherichia coli* and *Staphylococcus aureus* were inoculated into broth medium, while *Streptococcus agalactiae* and *Streptococcus dysgalactiae* were inoculated into broth medium supplemented with 2% fetal bovine serum. All the bacteria were incubated at 37°C for 24 h. The test microorganisms were diluted to a count of 10^6 CFU/ml and then transferred from nutrient broth to sterile Muller Hinton agar plates. Subsequently, filter paper discs (5 mm in diameter) saturated with different concentration of ethanolic extract and aqueous extract (20 µL) were placed on surface of each inoculated plate. The plates were incubated at 37°C for 24 h. Diameters of the inhibition zone were measured in mm. For each treatment, 3 duplicates were performed. Diameters of inhibition zone of <10 mm zone was considered as low sensitivity; 10-14 mm as medium sensitivity; while 15-19 mm as high sensitivity and ≥20 mm as extreme sensitivity, according to Standard for pharmacology of traditional Chinese medicine (Qi Chen 1993). The results were expressed as mean ± SD.

RESULTS AND DISCUSSION

As widespread and indiscriminate use of antibiotics has caused serious problems such as multidrug-resistant bacteria, antibiotic overuse and antibiotic residues in food, etc (Suriyasathaporn et al., 2012), thus a need for new materials to replace antibiotics to treat bacterial infections was felt. Previous studies have shown that plants extracts can be used to treat a variety of disorders including inflammatory conditions, bacterial infections, cancer and other diseases (Malhi et al., 2014). In the present study, antibacterial activities of aqueous and ethanolic extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz against pathogenic bacteria of cow mastitis were evaluated. Antibacterial activities of aqueous and ethanolic extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz are shown in Table 1 and Table 2. The results showed that aqueous and ethanolic extracts of the two herbs both could inhibit the four pathogenic bacteria of cow mastitis at different level. For *Portulaca oleracea* L., ethanolic extracts had higher antibacterial activities than aqueous extracts except against *Escherichia coli* (Table 1). However, *Taraxacum mongolicum* Hand.-Mazz, ethanolic extracts had lower antibacterial activities than aqueous extracts (Table 2). Extracts of the two herbs displayed higher antibacterial activities against *Escherichia coli* than other bacteria, in which the maximum inhibition zone of 22.7 mm appeared in *Portulaca oleracea* L. extracts (Table 1).

It was demonstrated that concentration of extracts of the two herbs had significant affect on the antibacterial activities, i.e. higher the concentration higher the antibacterial activity was.

TABLE 1. Antibacterial activities of aqueous and ethanolic extracts of *Portulaca oleracea* L.

<table>
<thead>
<tr>
<th>Name of the bacteria</th>
<th>Diameter of inhibition zone at different concentration levels (mm)</th>
<th>Aqueous extract</th>
<th>Ethanol extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 g/ml</td>
<td>0.25g/ml</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td>22.7±0.24</td>
<td>19.2±0.19</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>12.2±0.18</td>
<td>8.4±0.17</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td></td>
<td>17.5±0.28</td>
<td>15.4±0.23</td>
</tr>
<tr>
<td>Streptococcus dysgalactiae</td>
<td></td>
<td>18.2±0.25</td>
<td>15.6±0.21</td>
</tr>
</tbody>
</table>

TABLE 2. Antibacterial activities of aqueous and ethanolic extracts of *Taraxacum mongolicum* Hand.-Mazz

<table>
<thead>
<tr>
<th>Name of the bacteria</th>
<th>Diameter of inhibition zone at different concentration levels (mm)</th>
<th>Aqueous extract</th>
<th>Ethanol extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 g/ml</td>
<td>0.25g/ml</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td>21.3±0.16</td>
<td>18.2±0.17</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>18.5±0.18</td>
<td>15.7±0.21</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td></td>
<td>19.9±0.18</td>
<td>16.8±0.17</td>
</tr>
<tr>
<td>Streptococcus dysgalactiae</td>
<td></td>
<td>19.7±0.25</td>
<td>17.5±0.21</td>
</tr>
</tbody>
</table>
It has been reported that *Escherichia coli*, *Staphylococcus aureus*, *Streptococcus agalactiae* and *Streptococcus dysgalactiae* are the main pathogenic bacteria of cow mastitis; therefore, these strains were used in this study (Deb R et al., 2013). The results showed that all the extracts could inhibit these bacteria at different levels compared with the ethanolic extracts of *Portulaca oleracea* L. Generally had higher antibacterial activities than aqueous extracts. It is widely accepted that the antimicrobial component may be different between ethanolic extracts and aqueous extracts of the plants. The results of this study indicated that the antimicrobial component of the two herbs could be more soluble in ethanols compared to water. Previous studies supported this result (Sun et al., 2012; Zhou et al., 2015). A recent study has shown that the flavonoid apigenin isolated from ethanolic extracts of *Portulaca oleracea* L. has antibacterial property and could be used to develop antibiotic drugs (Hanumantappa et al., 2014). Our results also showed that ethanolic extracts of *Taraxacum mongolicum* Hand.-Mazz. generally had higher antibacterial activities than aqueous extracts. In China, aqueous extracts of *Taraxacum mongolicum* Hand.-Mazz has commonly been used in treating inflammatory disorders of breast during lactation of women. A recent study has shown that *Taraxacum mongolicum* Hand.-Mazz significantly inhibited production of NO and pro-inflammatory cytokines in LPS stimulated bovine mammary epithelial cell line, proving its anti-inflammation role (Kuo-Hua et al., 2013).

In conclusion, our results indicate that extracts of *Portulaca oleracea* L. and *Taraxacum mongolicum* Hand.-Mazz have the potential to be used in treating cow mastitis. Further research is required to investigate the bioactive molecules of the two herbs and their clinical outcome in treating cow mastitis.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China (NSFC: No.31160504; No.31460658), the China Postdoctoral Science Foundation (2012M520674), the Inner Mongolia Natural Science Foundation (2011MS0404) and the Inner Mongolia University Doctoral Foundation (BS284).

REFERENCES

