Legume Research-An International Journal
Publish
your articles with us

Quick Facts



Payment Options

payment portals

Click here to pay directly

Biochemical and molecular characterization of DAPG-producing plant growth-promoting rhizobacteria (PGPR) of groundnut (Arachis hypogaea L.)

D. Sherathia, R. Dey, M. Thomas, T. Dalsania, K. Savsani and K. K. Pal*
Microbiology Section, Directorate of Groundnut Research (ICAR),Ivnagar Road, PB No. 5, Junagadh-362001, Gujarat, India.
kkpal9426476749@gmail.com

Page Range:
614-622
Article ID:
LR-3364
Online Published:
1-03-2016
Abstract
Plant growth-promoting rhizobacteria (PGPR) thrive in the rhizosphere of plants and play a beneficial role in plant growth, and development along with biocontrol activities. The present study was undertaken with the aim of developing rhizobacterial inoculants for groundnut for enhancement of growth and yield and suppression of major soil-borne fungal diseases caused by Sclerotium rolfsii (stem rot) and Aspergillus niger (collar rot). Out of a total of 154 rhizobacterial isolates obtained from groundnut rhizosphere, 78 isolates were selected on the basis of in vitro antifungal activities against three major soil-borne fungal pathogens of groundnut, i.e. Aspergillus niger, Aspergillus flavus and Sclerotium rolfsii. The selected isolates were further screened for the production of 2,4-Diacetylphloroglucinol (2,4-DAPG) by the gene specific PCR amplification of phlD gene. A total of 11 rhizobacterial isolates were found to have DAPG-producing genes and selected for further studies. Gene specific primers were also used for characterization of the isolates for plant growth-promoting and biocontrol traits. The qualitative and quantitative estimation of the various attributes of the isolates were also carried out. Majority of the isolates showed production of IAA, siderophores and fluorescent pigments. The DAPG-producing rhizobacterial isolates have great potential as bio-inoculants for groundnut crop for suppressing soil-borne fungal pathogens and to enhance growth and yield.
Keywords
Biocontrol, DAPG, Groundnut, Growth-promotion, Rhizobacteria.
References
  1. Ahmadzadeh, M., Afsharmanesh, H.J., Nikkhah, M. and Sharifi-Tehrani, A. (2006). Identification of some molecular traits in fluorescent pseudomonads with antifungal activity. Iranian J. Biotechnol., 4: 245-253.
  2. Angayarkanni, T., Kamalakannan, A., Santhini, E. and Predeepa, D. (2005). Identification of biochemical markers for the selection of Pseudomonas fluorescens against Pythium spp. In: Asian Conference on Emerging Trends in Plant-    Microbial Interactions. University of Madras, Chennai, 295-303.
  3. Bakker, A.W. and Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth-stimulation. Soil Biol. Biochem., 19: 451-457.
  4. Catellan, A.J., Hartel, P.G. and Fuhrmann, J.J. (1999). Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J., 63: 1670-1680.
  5. Chet, I. and Inbar, J. (1994). Biological control of fungal pathogens. Appl. Biochem. Biotechnol., 48: 37-43.
  6. Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J. and Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol., 48: 505–512.
  7. De Freitas, J.R., Banerjee, M.R. and Germida, J.J. (1997). Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils., 24: 358-364.
  8. Defago, G. and Haas, D. (1990). Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis. Soil Biochem., 6: 249-291.
  9. Dey, R., Pal, K.K., Bhatt, D.M. and Chauhan, S.M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res., 159: 371-394.
  10. Dowling, D.N. and O’gara, F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol., 12: 133-141. 
  11. Dowling, D.N., Sexton, R., Fenton, A., Delany, I., Fedi, S., McHugh, B., Callanan, M., Moënne-Loccoz, Y. and O’Gara, F. (1996). Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control. In: [T Nakazawa; K Furukawa; D Haas & S Silver (eds.)]. Molecular Biology of Pseudomonads. American Society for Microbiology, Washington DC, pp. 502-511.
  12. Dye, D.W. (1962). The inadequacy of the usual determinative tests for the identification of Xanthomonas sp. NZT Sci., 5: 393-416.
  13. Frändberg, E. and Schnürer, J. (1994). Chitinolytic properties of Bacillus pabuli K1. J. Appl. Bacteriol., 76: 361-367.    Glick, B.R., Karaturovic, D.M. and Newell, P.C. (1995). A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian J. Microbiol., 41: 533-536.
  14. Hebbar, K.P., Davey, A.G., Merrin, J., McLoughlin, T.J. and Dart, P.J. (1992). Pseudomonas cepacia, a potential suppressor of maize soil - borne diseases - seed inoculation and maize root colonization. Soil Biol. Biochem., 74: 999-1007.
  15. Howell, C.R. and Stipanovic, R.D. (1980). Suppression of Pythium ultimum damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathol., 70: 712-715.
  16. Jacobson, C.B., Pasternak, J.J. and Glick, B.R. (1994). Partial purification and characterization of 1-aminocyclopropane-    1-carboxylate deaminase from PGPR, Pseudomonas putida GR12-2. Can. J. Microbiol., 40:1019-1025.
  17. Keel, C., Wirthner, P., Oberhansli, T., Voisard, C., Burger, J., Hass, D. and Defago, G. (1990). Pseudomonas as antagonists of plant pathogens in the rhizosphere: role of antibiotics 2,4- diacetylploroglucinol in the suppression of black root rot of tobacco. Symbiosis., 9: 327-341.
  18. King, E.O., Ward, M.K. and Raney, D.E. (1954). Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Medicine., 44: 301-307.
  19. Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol., 7: 39-44.
  20. Kwak, Y.S., Han, S., Thomashow, L.S., Rice, J.T., Paulitz, T.C., Kim, D. and Weller, D.M. (2011). Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl. Environ. Microbiol., 77: 1770-1776.
  21. Mantelin, S. and Touraine, B. (2004). Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot., 55: 27-34.
  22. Nowak-Thompson, B., Chaney, N., Wing, J.S., Gould, S.J. and Loper, J.E. (1999). Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol., 181: 2166-74.
  23. Ozgen, A., Sezen, K., Demir, I., Demirbag, Z. and Nalcacioglu, R. (2013). Molecular characterization of chitinase genes from a local isolate of Serratia marcescens and their contribution to the insecticidal activity of Bacillus thuringiensis strains. Current Microbiol., 67: 499-504.
  24. Pacheco, F.T.H., Silva-Stenico, M.E., Etchegaray, A., Gomes, J.E., Carrilho, E. and Tsai, S.M. (2006). Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts. Genetics Mol. Biol., 29: 137-141.
  25. Pal, K.K. and McSpadden Gardener, B.B. (2006). Biological control of soil-borne fungal pathogen. The Plant Health Instructor., www.apsnet.org/education. DOI: 10.1094/PHI-A-2006-1117-02. 
  26. Pal, K.K., Dey, R. and Bhatt, D.M. (2004). Groundnut (Arachis hypogaea L.) growth, yield and nutrient uptake as influenced by inoculation of plant growth promoting rhizobacteria. J. Oilseeds Res., 21: 284-287.
  27. Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R. and Singh, C.S. (2000). Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiol. Res., 155: 233-242.
  28. Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R. and Singh, C.S. (2001). Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol. Res., 156: 209-223.
  29. Patten, C.L. and Glick, B.R. (2002). Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795-3801.
  30. Pikovskaya, R.E. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya., 17: 362-370.
  31. Raaijmakers, J.M., Weller, D.M. and Thomashow, L.S. (1997). Frequency of antibiotic producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol., 63: 881-887.
  32. Ramette, A., Frapolli, M., De´fago, G. and Moe¨nne-Loccoz, Y. (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact., 16: 525–535.
  33. Renwick, A.R., Campbell, A. and Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Physiol., 40: 524-532.
  34. Rezzonico, F., Moënne-Loccoz,Y. and Défago, G. (2003). Effect of stress on the ability of a phlA-based quantitative competitive PCR assay to monitor biocontrol strain Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol., 69: 686-690.
     
Global footprints


© 2015 AARC JOURNALS. All Rights Reserved. Powered By AARC JOURNALS