Legume Research-An International Journal
Publish
your articles with us

Quick Facts



Payment Options

payment portals

Click here to pay directly

Arbuscular mycorrhizal fungi alleviate salt stress in lupine (Lupinus termis Forsik) through modulation of antioxidant defense systems and physiological traits

Abeer Hashem1,2, Elsayed Fathi Abd_Allah*, Abdilaziz A. Alqarawi, Stephan Wirth3 and Dilfuza Egamberdieva3

Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box. 2460 Riyadh 11451, Saudi Arabia.

eabdallah@ksu.edu.sa

Page Range:
198-207
Article ID:
LR-252
Online Published:
9-04-2016
Abstract

The present study was carried with the aim to demonstrate and examine the impact of arbuscular mycorrhizal fungi (AMF) on the growth, anti-oxidants metabolism and some key physio-biochemical attributes including the osmotic constituents in Lupinus termis exposed to salt stress. Salt stress (250 mM NaCl) reduced growth, AMF colonisation, relative water content and chlorophyll pigment content. However, AMF ameliorated the negative effect of salinity on these growth parameters. Salt stress increased the activities of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD). Inoculation of AMF enhanced the activities of these enzymes and caused an increase in the accumulation of osmotic components resulting in the maintainence of tissue water content. Proline, glycine betaine and sugars increased with salinity stress and AMF inoculation. Plants subjected to salt stress showed considerable variations in the endogenous levels of growth hormones. Reduced lipid peroxidation and increased membrane stability in AMF inoculated plants and enhanced activity of anti-oxidants enzymes confers the role of AMF in assuaging the salt stress induced deleterious effects.

Keywords
AMF, Antioxidants, Lupine, Osmolytes, Phenol, Plant growth hormones, Salinity.
References
  1. Abd_Allah, E.S., Abeer, H., Alqarawi, A.A. and Alwathnani, H.A. (2015a). Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak. J. Bot., 47: 785-795.
  2. Abd_Allah, E.S, Hashem, A., Alqarawi, A.A., Bahkali, A.H. and Alwhibi, A.S. (2015b). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J. Bio. Sci., 22: 274-283.
  3. Abdel Latef, A.A.H. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort., 127: 228-233.
  4. Ahanger M.A., Hashem Abeer, Abd_Allah E.F. and Ahmad P. (2014). Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress. In: P. Ahmad (Ed): Emerging Technologies and Management of Crop Stress Tolerance, Volume 2. Pp 69-95.. DOI: http://dx.doi.org/10.1016/B978-0-12-800875-1.00003-X © 2014 Elsevier Inc. All rights reserved.
  5. Alqarawi, A.A., Abd Allah, E.F. and Hashem, A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact. 9:802–810.
  6. Arnon D.I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
  7. Aroca, R., Ruiz-Lozano, J.M., Zamarreno, A., Paz, J.A., Garcia-Mina, J.M., Pozo, M.J. and Lopez-Raez, J.A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170: 47-55.
  8. Baatour, O., Tarchoun, I., Nasri, N., Kaddour, R., Harrathi, J., Drawi, E., Mouhiba., B. Nasri-Ayachi., B. Marzouk. and M. Lachaal. (2012). Effect of growth stages on phenolics content and antioxidant activities of shoots in sweet marjoram (Origanum majorana L.) varieties under salt stress. Afr. J. Biot. 11: 16486-16493.
  9. Bates, L.S., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Sci. 39: 205-207.
  10. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizating the protein dyes binding. Ann. Biochem., 72: 248-254.
  11. Chance, M. and Maehly, A.C. (1955). Assay of catalases and peroxidases. Methods Enzymol. 2: 764-817.
  12. Daniels, B.A. and Skipper, H.D. (1982). Methods for the recovery and quantitative estimation of propagules from soil, in: Methods and Principles of Mycorrhizal Research, Schenck, N.C., (Eds.), The American Phytopathological Society. pp. 29-36, 
  13. Grieve, C.M. and Grattan, S.R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil., 70: 303-307. 
  14. Hameed A, Egamberdieva D., Abd_Allah E.F.; Hashem Abeer, Kumar A. and Ahmad P. (2014). Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Use of Microbes for the Alleviation of Soil Stresses, M. Miransari (ed.), Volume 1, DOI: 10.1007/978-1-4614-9466-9_7, © Springer Science+Business Media New York 2014.
  15. Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., Aldubise, A. and Egamberdieva, D. (2015). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J. Plant Int. 10: 230-242.
  16. Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., El-Didamony, G., Alwhibi Mona, S., Egamberdieva, D. and Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak. J. Bot., 46 : 2003-2013.
  17. Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125: 189-198. 
  18. Hoseini, S.M. (2010). Studying effects of salinity stress on germination, proline and carbohydrate content in Thyme (Thymus vulgaris L) seedlings. Int. J. Agri. Crop Sci., 2: 34-38.
  19. Iqbal, N., Umar, S., Khan, N.A. and Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot., 100: 34-42.
  20. Iqbal, N., Umar, S. and Khan, N.A. (2015). Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol. 178: 84-91.
  21. Kelen, M., Çubek Demiralay, E., ªen, S., Ozkan, G. (2004). Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri × Vitis rupestris) and rose oil (Rosa damascena Mill.) by reversed phase liquid chromatography. Turk. J. Chem., 28: 603-610.
  22. Khan, M.I.R., Asgher, M. and Khan, N.A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Bioch., 80: 67-74.
  23. Khan, M.I.R., Nazir, F., Asgher, M., Per, T.S. and Khan, N.A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173: 9-18.
  24. Khattab, H. (2007). Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline conditions. Aust. J. Basic App. Sci. 1: 323–334.
  25. Kusaba, S., Kano-Murakami, Y., Matsuoka, M., Tamaoki, M., Sakamoto, T., Yamaguchi, I. and Fukumoto, M. (1998). Alteration of hormone levels in transgenic tobacco plants over expressing a rice homeobox gene OSH1. Plant Physiol. 116: 471-476. 
  26. Lim, J.H., Park, K.J., Kim, B.K., Jeong, J.W. and Hyun-Jin, K. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem., 135: 1065-1070.
  27. Luck, H. (1974). Catalases. In: Bregmeyer, H.U. (Ed.), Methods of Enzymatic Analysis. Academic Press, New York, USA. 
  28. Malik, C.P. and Singh, M.B. (1980). Extraction and estimation of enzymes. In: Plant enzymology and Histoeenzymology, A Text Manual, (1st Edn.). Kalyani Publisher, New Delhi. pp. 286. 
  29. Masood, A., Iqbal, N., Asgher, M., Khan, M.I.R., Fatma, M. and Khan, N.A. (2013). Variation in carbohydrate accumulation in two cultivars of mustard and its association with salt tolerance. J. Funct. Environ. Bot., 3: 94-102.
  30. Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol., 132: 272–281.
  31. Moghaieb, R.E.A., Saneoka, H. and Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycine betaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci., 166: 1345–1349.
  32. Mukherjee, S.P. and Choudhuri, M.A. (1983). Implication of water stress-induced changes in levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology., 58: 166-170.
  33. Naguib, M.I. (1964). Effect of sieving on the carbohydrate and nitrogen metabolism during the germination of cotton seeds. Ind. J. Agric. Sci. 35: 179-185. 
  34. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol., 22: 867-880. 
  35. Nelson, N. (1944). Photometric adaptation of Somagi method for the determination of glucose. J. Biol. Chem. 153: 375-380. 
  36. Noctor, G. and Foyer, C.H. (1998). Simultaneous measurement of foliar glutathione, ã-glutamyl cysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Biochem., 264: 98-110.
  37. Rasool, S., Ahmad, A., Siddiqi, T.O. and Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta. Physiol. Plant., 35: 1039-1050.
  38. Ruiz-Lozano, J.M., Porcel, R., Azcon, R. and Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies. J. Exp. Bot., 63: 4033-4044.
  39. Said, A., Naguib, M.I. and Ramzy, M.A. (1964). Sucrose determination as a means of the “Darw back tax” exported Halawa Tehinia. Bull. Facult. Sci. Cairo. Univ. 39: 209-214. 
  40. Siegrist, J., Orober, M. and Buchenauer, H. (2000). b-aminobutyric acid mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol., 56: 95-106.
  41. Slinkard, K. and Singleton, V.L. (1977). Total phenol analyses: automation and comparison with manual methods. Amer. J. Enol. Viticult., 28: 49-55. 
  42. Smart, R.E. and Bihgham, G.E. (1974). Rapid estimates of relative water content. Plant Physiol., 53: 258-260. 
  43. Thakur, M. and Sharma, A.D. (2005). Salt stress induced proline accumulation in germinating embryos: Evidence suggesting a role of proline in seed germination, J. Arid. Environ., 62: 517–523.
  44. Utobo, E.B., Ogbodo, E.N. and Nwogbaga, A.C. (2011). Techniques for extraction and quantification of arbuscular mycorrhizal fungi, Libyan Agric. Res. Center. Int., 2: 68-78.
  45. Van-Rossum, M.W.P.C., Alberda, M. and van der Plas, L.H.W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci., 130: 207-216. 
  46. Wolf, B. (1982). A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Comm. Soil Sci. Plant Anal., 13: 1035-1059.
  47. Wu Q., Zou Y.N. and Abd_Allah E.F. (2014). Mycorrhizal Association and ROS in Plants. In: P. Ahmad (Ed): Oxidative Damage to Plants. DOI: http://dx.doi.org/10.1016/B978-0-12-799963-0.00015-0 © 2014 Elsevier Inc. All rights reserved.
     
Global footprints


© 2015 ARCC JOURNALS. All Rights Reserved. Powered By ARCC JOURNALS