Agricultural Reviews
Publish
your articles with us

Quick Facts



Payment Options

payment portals

Click here to pay directly

NUTRIENT CYCLING IN FOREST ECOSYSTEMS - A REVIEW

J.C. Sharma and Yogender Sharma
Department of Soil Science and Water Management, Dr. Y. S. Parmar University of Horticulture and Forestry, Nimni, Solan (HP) - 173 230, India

DOI:
Page Range:
157 - 172
Article ID:
ARCC4251
Online Published:
Abstract
Nutrient management has been well recognized since early times and has become highly relevant with the advent of various commercial forestry programmes. There is a need to understand the nutrient cycling and also budgeting in different forest ecosystems to know the amount of nutrients to be replenished to maintain the forest ecosystems in good health. The cycling of nutrients is important both in natural forests and man made protected plantations as considerable amount of nutrients are returned through litter fall, weathering of rocks, biological N 2 fixation, rainfall etc. and become available for reabsorption. Investigations carried out by various researchers with different forest species in India and abroad demonstrated considerable variations in the major components of nutrient cycle. Maximum amount of macronutrients (N, 33–57%; P, 13–38%; K, 40–48%; Mg, 40–68%) in Tectona grandisGmelina arborea and Eucalyptus was accumulated in bole, while maximum Ca (57–75%) was held in bark. Though large amount of nutrients was accumulated in the biomass components of the standing crop, but the annual retention of N, P, K, Ca and Mg was much less than the quantity returned to the soil through litter fall. Harvesting of only utilizable biomass (148 t/ha) ofTectona grandis at the age of 30 years removed 247, 41, 170, 632 and 198 kg/ha N, P, K, Ca, and Mg, respectively. However, harvesting of utilizable biomass of Eucalyptus grandis (264 t/ha) at the age of 11 years removed comparatively higher amount i.e. 380, 50, 220, 650 and 220 kg/ha of N, P, K, Ca, and Mg, respectively. But, the total amount of these respective nutrients removed in the whole tree harvesting ofEucalyptus hybrid at the age of 10 years was comparatively less i.e. 341, 9, 199, 293 and 139 kg/ha, N, P, K, Ca and Mg, respectively. The harvesting of utilizable biomass in Eucalyptus grandis irrespective of age was more exhaustive. The removal, retention and release of nutrients varied with species, age, site and climate conditions etc. Fixation of atmospheric N 2 by microorganisms is probably the most important pathway for this element to enter the forest ecosystems.
Keywords
References
  1. Adams, MA and Atiiwill, P.M. (1991). For. £Col. Mgmt.. 44: 93-114.
  2. Attiwil, P.M. (1966). PI. Soil, 24: 390-406.
  3. Banerjee, S.K. et al. (1998). Adv. Forestry Res. India, 19: 98-118.
  4. Bhartari. S.K. (1986). Indian For., 112: 187-201.
  5. Boyle, J.R and Ek, A.R (1972). Can. J. For. Res., 2: 407-412.
  6. Brady, N.C. (2000). The Nature and Properties of Soils. Prentice Hall of India. New Delhi, pp. 332-333.
  7. Carlisle, A. etal. (1967). J. Ecol., 55: 615-627.
  8. Cole, DW. et al. (1967). In: Primary Productivity and Mineral Cycling in Natural Ecosystem~. (Young, H.E. ed.).
  9. Univ. Maine Press, Orono.
  10. Cromer, RN. and Williams, E.R. (1982). Indian For., 112: 187-201.
  11. Dommergues, YR (1987). In: Agroforestry: A Decade ofDevelopment. (Steppler, H.A. and Niar. K.P.R. ed.)
  12. pp 245-271, ICRAF, Nairobi, Kenya.
  13. Duvigneaued, P. and Denaeyer-DeSmet (1970). In: In Analysis of Temperate Forest Ecosystems. (Reichle. D.E. ed.)
  14. Springer-Verlag, New York.
  15. Ehwald, E. (1957). Uber den Nahrstoffkreislauf des Waledes. Deutsche Akd. Landw Wiss. Berlin. Sitz. Ber.6.1.56 p.
  16. Esc3lanti, G. et al. (1984). Pesquisa Agropecuaria Brasileira, 19: 223-230.
  17. Farugi, C. (1972). Ph. D. Thesis, Banaras Hindu University, Varanasi, India.
  18. Fiaz Mohsln et aI. (1996). Indian J. For., 19: 302-310
  19. Gadgil, RL. (1971). PI. Soil, 34: 357-367. .
  20. Gassel, S.P. and Cole, D.W. (1965). Soil Sci. Soc. Am. Proc. 20: 97-100.
  21. Gassel, S.P. et al. (1973). Soil Boil., 5: 19-39.
  22. George, M. (1977). Ph. D. Thesis, Meerut Univ. Meerut (UP) India.
  23. George, M. (1978). Indian For., 104: 719-726.
  24. George, M. (1984). Indian For., 110: 61-67.
  25. George, M. (1986). Myforest, 22: 19-26.
  26. George, M. and Varghese, G. (19'90a). Indian For., 116: 42-48.
  27. George, M. and Varghese, G. (1990b). Indian For., 116: 962-968.
  28. George, M. and Varghese, G. (1991). Indian For., 115: 110-116.
  29. Giri Rao, L.G. et al. (2000). Indian For., 126: 772-781.
  30. Golley, EB. et aI. (1975). Mineral Cycling in a Moist Forest Ecosystems, Univ. Georgia Press, Athens, 248 p.
  31. Hognberg, P. and Kvarnstorm, M. (1982). PI. Soil. 66: 21-28.
  32. Hosur, G.C. and Dasog, G.S. (1995). J. Indian Soc. Soil Sci., 43: 256-259.
  33. Hosur, G.C. et aI. (1997). Indian J. For., 20: 231-235.
  34. Jordan, C.E (1985). Nutrient Cycling in Tropical Forest Ecosystems. John Wiley. New York, USA.
  35. Kaul, O.N. et al. (1979). Indian For., 105: 171-179.
  36. Kaushal, R.K. et al. (1996). Indian J. For., 19: 258-263.
  37. Nair, K.P.R. (1984). Introduction to Agroforestry. Kluwer Academic Publishers, Netherlands. pp. 307-322.
  38. Nair, PKR et al. (1998). In: Agroforestry in Sustainable Agricultural Systems. (Buck, L.E. et al. ed.) Lewis Publishers
  39. CRC Press, New York. pp i -31.
  40. Narayana, D.S. (1972). Ph. D. Thesis, Botany, Banaras Hindu University, Varanasi, India.
  41. Negi, J.D.S. et al. (1984). Indian For., 110: 802-813.
  42. Negi, J.D.S. and Sharma, D.C. (1984).Indian For., 110: 944-953.
  43. Negi, J.D.S. et al. (1990). Indian For., 116: 681-686.
  44. Negi, S.S. et al. (1995). Indian For., 121: 455-464.
  45. Neumann, E.E. (1966). Arch Forester, 15: 1115-1138.
  46. Nye, P.H. (1961). PI. Soil, 13: 333-346.
  47. Ovington, J.D. and Madgwick, HA (1959). PI. Soil, 10: 389-400.
  48. People, M.B. and Herridge, D.E (1990). Advances In Agronomy, 44: 155-223.
  49. Ramam. S.S. (1984). IndianJ. For., 7: 93-102.
  50. Rawat, J.K. and Tandon, V.N. (1993). Indian For., 977-985.
  51. Remezov, N.P. (1959). Pochvovedenie, 1: 71-79.
  52. Remezov, N.P. and Pogrebnyak, P.S. (1969). Forest Soil Science. USDA, Natn. Sci. Found., Washington, D.C. 261p.
  53. Rennie, P.J. (1955). PI. Soil, 7: 49-95. 172 AGRICULTURAL REVIEWS
  54. Roskoski, J.P. (1982). In: Nitrogen Cycling in Ecosystems of Latin America and the Carribbean. (Roberstson, G.P.
  55. et al., ed.) Martinus Nijhoff, The Hague, The Netherlands. pp 283-292.
  56. Roskoski. J.P. et al. (1982). In: Biological Nitirgen Fixation Technology for Tropical Agriculture. (Graham, P.H. ed.)
  57. ClAT, Cali, Colombia. pp 447-454.
  58. Sanginga, N. et al. (1986). In: Biological Nitrogen Fixation in South Africa. (Sali. H. and Keya. S O. ed.) MIRCEN.
  59. Nairobi, Kenya.
  60. Sanginga, N.K. etal. (1995). PI. Soil. 174: 119.
  61. Seth, S.K. et al. (1963). Indian For., 89: 90-98.
  62. Shanmughavel, P. (1993). Myforest, 29: 249-252.
  63. Sharma. B.M. (1977). Ph. D. Thesis, Banaras Hindu University, Varanasi, India.
  64. Sharma. D.e. et al. (1988). Indian For., 114: 261-268.
  65. Sharmil. JP. et al. (2001). Indian J. Soil Cons., 28: 91-97.
  66. Sharma. N.K. et al. (2000). Indian J. Soil Cons., : 295-299.
  67. Singh, AK and Singh, B. (1991)./ndian J. For., 14: 196-201.
  68. Singh. KP. (1968). Proc. Symp. Recent Adsv. Tro. Ecol. (Misra, Rand Gopal. G. ed.) pp. 665.
  69. Singh. K.P. (1969). Trap. Ecol., 10: 83-95.
  70. Singl!. R.D. and Bhatnagar, V.K (1997). Indian J. For., 20: 147-149.
  71. Srivastava. P.B.1. et a/. (1972). Proc. Symp. Man-Made Forests in India. Soc. Indian For.
  72. Sugar. G.v. (1989). Myforest, 25: 43.
  73. Switzer. G.L. and Nelson, L.E. (1972). Soil Sci. Soc. Am. Proc., 36: 143-147.
  74. Szott. L.T. et al. (1991).jn: Agroforestry: Principle and Practices. (Javis, P,G. ed.) Elsevier, Amsterdam, The Netherlands. pp 127-152.
  75. Tal11111. e.0. (1958). In: Encycl. Plant PhysioJ.. 4: 233-242.
  76. Tandon, VN et al. (1988). Indian For.. 114: 184-199.
  77. Tandon, VN et al. (1991). Indian For. 117: 596-608.
  78. Tandon. VN. etal.(1996).lndianFor., 122: 31-38.
  79. Tarrant, R.F. (1990). In: Biology of Alder. Pacific Northwest Forest and Range Experiment Satation, Portland,
  80. pp. 193.
  81. Tiwari, D.N. (1993). Poplar. Surya Publications, Dehradun, India.
  82. Turner, J. and Lambert. N. (1983). FQr. Ecol. Mgmt.. 6: 155-168.
  83. Vogi. K.A et al. (1986). Adv. Ecol. Res., 15: 303-377.
  84. Weetman, G.F. and Webber, B. (1972). Can. J. For. Res.. 2: 351-369.
  85. Wells, e.G and Jorgensen, J.R. (1975). In: Forest Soils and Forest Land Management. (Bernier, B and Winget, C. H. ed.) Lavai Univ. Press Quebec.
  86. Wells, e.G. et ai, (1972), Sci. Soc., 88: 66-78.
  87. Woodwell. G.M. and Whittaker, RH. ) 967). In: Symposium on Primary Productivity and Mineral Cycling in Natur~ Ecosystems. (Young. H.E. ed.) Univ. Maine Press, Orono. pp 151-166.
Global footprints


© 2015 AARC JOURNALS. All Rights Reserved. Powered By AARC JOURNALS